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ABSTRACT 
We examine the problem of choosing a hazardous waste disposal alternative, where 
there are multiple attributes associated with each site, and the decision maker has 
imprecise information regarding the impact of the waste on each site, and his 
preference ordering for each attribute. We show how developments in multi-
attribute utility theory (MAUT) and fuzzy set analysis can be used to address 
the problem. We apply the methodologies to a case study concerning the 
disposal of PCB contaminated transformer fluids at one of three sites, and 
conclude that MAUT is superior to fuzzy set analysis in cases where there is 
imprecision in either value scores or preference weights, but not both. 

INTRODUCTION 
Industrial chemicals are often quite toxic and could cause allergies, damage vital 
organs of the human body, and cause and promote cancer. According to the 
Office of Technology Assessment [1] , American industry generates 
approximately 255 to 275 million metric tons of industrial chemical wastes 
annually. Much of the industrial waste is dumped in landfills and could be quite 
hazardous. Greenberg and Anderson have concluded after an extensive study 
that many of the landfill sites are unmonitored and the wastes leach into the 
groundwater, causing significant, and potentially catastrophic, contamination [2]. 

Landfills are not the only technique for disposing of the hazardous waste. 
There are basically three strategies for solving the problem: the wastes can be 
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reduced at the source, converted to less hazardous or non-hazardous substances, 
or placed as residuals in the environment. Waste reduction consists of four 
components: abatement, minimization, reuse, and recycling. (See [3] for 
detailed description of these options.) Incineration and biotechnological 
treatment detoxify wastes and are examples of conversion to less hazardous 
substances. Landfills, surface impoundments, and underground injection wells 
are examples of placing the residuals in the environment. Each of these 
technologies has its merits and drawbacks. 

The choice of waste disposal alternative has been a challenge to the 
governmental decision makers. The main problem of locating landfills, for 
instance, have been characterized by the phrases LULU (Locally Unwanted Land 
Use) and NIMBY (Not In My Back-Yard), reflecting community responses (or 
opposition) to the selection of sites. The community opposition has to be 
incorporated into any decision concerning waste disposal technology. In 
addition, the alternatives have to be evaluated on other criteria including air and 
water quality, land use, demography, emergency response, technical and 
economic parameters, etc. Issues involve what relative value should be placed on 
each criterion, how to incorporate the value judgements of the affected 
community into the decision, and how qualitative and quantitative information 
should be combined. 

In this article we examine the problem of choosing a hazardous waste disposal 
alternative using developments in multi-attribute utility theory (MAUT) and 
fuzzy set analysis. The basic MAUT model involves obtaining values scores for 
each alternative for each of multiple attributes (criteria) and then combining the 
scores by weighting them by scaling constants that specify the importance of 
each attribute. In most cases, decision makers have difficulty responding to the 
lottery based questions that result in value scores and preference weights [4]. 
Thus, the methodological focus of this article is on making decisions when there 
is only imprecise information. 

We present MAUT-based methodologies for making decisions when some 
information is given in ordinal terms (for example, preference order among 
attributes) and some in cardinal terms. When the decision maker can present 
semantic, degree of preference, or rating information, we use developments in 
fuzzy set analysis to solve the problem. These methodologies are applied to a 
case study of a utility company considering the disposal of PCB-contaminated 
transformer fluids using one of three incineration alternatives. Besides making 
the decision on the optimal site, we also examine the relative merits of MAUT-
based and fuzzy set methodologies in addressing the problem of imprecision. 
We find MAUT based methodology to be superior in situations where there is 
imprecision in either the value scores or the preference weights but not both. 
Fuzzy set analysis seems to perform better when there is complete imprecision. 

The article is organized as follows: The next section develops the MAUT 
and fuzzy set methodology to be used in this study. Section 3 describes the 
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hazardous waste disposal problem and presents the salient information. Site 
selection computations are presented in Section 4 with discussions on the results. 
The final section assesses these results. 

2. MULTI-ATTRIBUTE DECISION MAKING 
UNDER IMPRECISE INFORMATION 

Overview 
We are considering a problem where the ultimate decision is based on the 

assessment of impacts on multiple criteria or attributes, X1,X2,..., X„. In 
order to facilitate the decision, we invoke an evaluation (or value) function 
v (x j ,x 2 , . . . , xn) where Xj is the specific level of Χ}, that has the property that 
v (x^ ,x£ , . . . , x£) > v ( x ^ , . . . , xJJ) when alternative A is preferred to B. (Here 
x| is the level of X; for alternative j.) The overall preferability function v(·) is 
often decomposed into the individual components by using the weighted-additive 
form: 

v ( X l , x 2 , . . . , xn) = Σ ki vjixj), (1) 
i = l 

where the V; are single-dimensional value functions, and kj are positive weighting 
(scaling) constants (which can be normalized by imposing Zki = 1). The additive 
value structure satisfies axioms of rational decision making [5], and is the most 
common form used in applications (see [6-8], for example). 

In order to use equation (1) for real world decision making problems, it is 
important to obtain specifications of ki; the preference weights, and V;(·), the 
individual value functions. Most applications use cardinal specifications of these 
parameters. (Keeney and Raiffa show how to obtain this information [4].) 
However, in most applications the decision makers are only able to specify this 
information incompletely. The imprecision in value scores and trade-off weights 
can be described by set inclusion [9], a special case being purely ordinal 
information. Conversely, the entire problem can be cast in the framework of 
fuzzy set analysis where we use membership functions to specify the degree to 
which the weights and value scores belong to the set of possible values for these 
parameters. 

We examine three possible degrees of completeness of information: 

a. known value scores for all attributes, and imprecise preference structure; 
b. known preference weights and imprecise ranking of alternatives by 

attributes; and 
c. imprecise ranking for both values and preference weights. 

In the case of (a.), we use concepts initially attributed to Fishburn [10], and 
later developed by Hannan [11] and Kirkwood and Sarin [12] to solve the 
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problem. In the case of (b.), we use an extension of a ranking method proposed 
by Cook and Seiford [13]. Finally, when there is only ordinal information, we 
use fuzzy set analysis developed by Yager [14] for the solution. We now briefly 
describe these methods. 

Cardinal Values and Imprecise Preference Weights 

Suppose we know the value scores of each attribute for each alternative: i.e., 
all Vi(xi) for all i, i = 1 , . . . , n, attributes and j , j = 1 , . . . , m alternatives are 
known. In addition, suppose we know the exact ordering of the decision maker 
preference for the attributes. Without loss of generality, we can assume that this 
order is given by kj > k 2 , . . . , > kn > 0. 

Then, it has been proven in different, but related form, by Fishburn [10], 
Hannan [11], and Kirkwood and Sarin [12], that alternative a is a preferred to 
alternative a' if and only if: 

iv iCxf^ZViixf ' ) , £ = l , . . . , n , (2a) 
i= 1 i= 1 

with at least one of the inequalities being strict, i.e., 
fi ß 

Σ Vj(xf) > Σ Vj(xf'), for at least one £ = 1 , . . . , n. (2b) 
i= 1 i= 1 

By invoking equation (2) we can pair-wise rank all alternatives. Also make 
note of the fact that equation (2) is general and allows pair-wise ranking even 
when 

a. there is indifference in the preference order among some attributes; 
b. there is only partial ranking; and 
c. there are parallel rankings, etc. 

(See [12] for corollaries to the result established by equation (2).) 
Suppose the preference weights can be specified more precisely using natural 

language measures that give degrees of importance. One such set of measures 
that compare pairs of attributes is given in Table 1. Using these "fuzzy" 
measures, Saaty has developed a procedure for obtaining a cardinal ratio scale 
for the attributes compared [15]. The procedure, called the Analytic Hierarchy 
Process, is described below. 

Suppose we are comparing attribute i with attribute j , we assign values a^ 
from Table 1. For instance, if the attribute 1 is strongly preferred to attribute 3, 
we assign a13 = 5. Then we proceed as follows: 

1. let aji = l/a i j 

2. let aü = 1 
3. construct matrix a = ( a- | i = 1 , . . . ,n; j = l . . . -,n} 

(3.1) 
(3.2) 
(3.3) 
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Table 1. Linguistic Measures of Preference 

Intensity of Importance Definition 

1 , Equal Preference or Indifference 

3 Weak Preference 

5 Strong Preference 

7 * Demonstrated Preference 

9 Absolute Preference 

2,4,6,8 Intermediate Values 

Source: Saaty [15]. 

Saaty has shown that the eigenvector corresponding to the maximum 
eigenvalue of A is a cardinal ratio scale for the attributes compared [15]. The 
eigenvalue problem is solved by 

Ak = Xmax.k, (4) 

where Xmax is a scalar corresponding to the maximum eigenvalue, and the 
eigenvector k corresponding to Xmax gives the preference weights. 

This procedure allows imprecise fuzzy specifications of preferences to be 
translated into a consistent vector of preference weights which can be used 
together with equation (1) to obtain the preferred alternative. 

Imprecise Value Scores and 
Cardinal Preference Weights 

Now, let us suppose that estimates of the preference weights can be obtained 
from the decision maker using procedures outlined in the literature on decision 
theory [10]. However, the attribute value scores are not known exactly for the 
alternatives. What is known about the alternatives is how they measure up in 
satisfying the attributes (objectives). So, for example, in the case of the water 
quality attribute, weniay have information on which of the waste disposal sites 
affects it most, next, least, and so on. For each attribute, the decision maker 
would provide a rank order as to how the alternatives would satisfy them. Thus, 
if a! stands for the rank order of the i-th alternative in satisfying the j-th 
attribute, for the k-th alternative we have 

A*= a*, 4,..., a* , k = l n . (5) 

Cook and Seiford examine a problem where consensus has to be reached among 
m decision makers who rank n alternatives separately [13]. They propose a 
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distance measure to obtain a consensus ranking and show that this distance 
measure satisfies a number of axioms of social justice. This distance measure has 
been tried in some applications [16, 17], and can be adopted for this problem. 

Each attribute in our problem can be considered synonymous with each 
decision maker in the Cook and Seiford (hereafter C-S) study [13]. In this case, 
the consensus ranking of alternatives is given by the rank Cj which minimizes the 
distance measure in the C-S study: 

n m 
D= Σ Σ l a j - c j l . (6) 

j = l i = l 

In our study, there is a further complication: each attribute has a different 
degree of importance given by the cardinal preference weights kj. Thus, we need 
to modify the above and obtain a ranking which minimizes 

n m · 
D= Σ Σ k i l a U c J . (7) 

j = i i = i 

As noted by Cook and Seiford, when there are no ties in the rankings, the rank 
order for the alternatives can be obtained by solving the following assignment 
problem [13] : 

m m 
(8) 

i = l i = l ' ' 

subject to 
n 

(9) 

(10) 

(11) 

and 

" i - j l · (12) 
Vj 

Thus, once the impact of the different alternatives for each attribute is given 
in ordinal terms, the problem given by equations (8) through (12) is solved for 
the given cardinal preference weights to obtain an assignment of a different 
overall rank for each alternative. 

The impact of the different alternatives for each attribute can also be given by 
membership functions rather than ordinal measures. The membership function 
is derived from Zadeh's set theory [18], and represent numerically the degree to 

m m 
in Σ Σ 

i = l i = l 

n 
Σ 

i = l 

n 
Σ 

i = l 

d i j 

d i j * i j 

*ij = l V J 

x i j = l Vi 

Xj,>0 Vi,j 

= Σ ke | a,f 
8=1 
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which an element belongs to a set. This function takes on values between 0 and 
1, and it is an extension of the idea of a characteristic function of a set. Since 
we have A = { a t , . . . , am | alternatives, a fuzzy subset B of A is characterized 
by a membership function UB(A) which associates with every member of A, a 
number in the interval [0,1] which indicates the grade of the membership of 
B in A. The fuzzy subset B can be, for instance, the level of water pollution 
caused by the alternative waste disposal sites. 

Now, suppose we have more than one fuzzy set over the alternative A; i.e., 
more than one attribute over which the alternatives are evaluated. Let us call 
these attributes X j , . . . , xn. In order to evaluate the alternatives, Zadeh 
suggests using the rule of implied conjunction f 18], stated as 

D = B 1 ( x 1 ) n B 2 ( x 2 ) n . . . n B n ( x n ) , (13) 

where D is the decision, and B; ( ) is a fuzzy subset of the set of potential 
alternatives whose membership function indicates how well each of the 
alternatives satisfies that attribute (or objective). In addition, D is also a fuzzy 
subset of the set of potential alternatives whose membership function uD(A) 
indicates how well each of the candidates satisfies the set of objectives and is 
given by 

uD(A) = Max Min[uXi(a),uX2(a)] (14) 

forallaeA [18]. 
Thus, in the case where the value scores are known imprecisely, the procedure 

is to establish membership functions for each alternative vis-a-vis each attribute, 
then to derive the membership function for the fuzzy decision using equation 
(14). Up to this point we have not considered the relative importance of each 
attribute, but this can be incorporated into the fuzzy set analysis. Zadeh, for 
instance, associates an operation of raising the set A to its second power (i.e., 2) 
with the linguistic modifier "very" [18]. For example, if A stands for the 
attribute "clean," A2 would stand for "very clean." Yager uses this concept to 
incorporate scaling (preference) weights as follows [14] : 

Definition - Let B be a fuzzy subset over A and let a > 0 be a scalar. The 
operation of raising B to the a power, denoted by Ba is defined as a fuzzy set 
over A with membership function: 

uBo(A)=[uB(A)]« (15) 

for all aGA. 
Thus, the decision with imprecise value scores and cardinal preference weights 

are obtained by deriving the membership function for the decision as 

UD(A) = Max { Min ( u X i ( a ) ] k i , . . . , [uXn(a)]kn }. (16) 

Thus, equation (16) provides a complete derivation of the multi-attribute 
decision problem with imprecise value scores. 
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Imprecise Value Scores and 
Attribute Preference Weights 

In the case where both the value scores and preferences for the alternatives 
with respect to each attribute is only known imprecisely, we would use a 
combination of the developments in the previous sections. 

Let us consider the case when the values and preferences are given by ordinal 
measures. Hannan [11] proposes a modification of the Cook and Seiford [13] 
method for solving this problem. 

First, consider the matrix D = {d^ | j = 1 , . . . , m} using equation (12). Note 
that this matrix will be given in terms of the preference weights ks (£ = 1 , . . . , n), 
and would represent the value scores for each alternative for each priority rank. 
Next, we need to decide how to rank the alternatives given this information. 
Here we form value scores in terms of the k's for different combination of 
priority ranks R;(k). Since there are m alternatives, there would be m! 
possibilities (i.e., i = 1 , . . . , m!). Finally, we use the knowledge on the ordinal 
ranking of the k's to obtain the non-dominated ranking of the alternatives. 

While this method is likely to work for some number of alternatives, when m 
is large, m! possibilities have to be assessed, and this could become quite tedious. 
Conversely, we could follow White, et al. and solve linear programs of the form 
[9]: 

ARjj* = Min Rj(k) - Rj(k) i Φ j (17) 

s.t. k 1 > k 2 > . . . > k n , (18) 

where non-dominated ranking of alternatives i would have ARjj > 0 for i Φ j . 
Suppose there is fuzzy specification of the value scores and preference weights 

which is more informative than purely ordinal ones. Then the procedure follows 
developments in fuzzy set analysis given in the previous sections. Attribute 
weights are obtained by getting the decision maker to make responses as in 
Table 1, deriving the A matrix through equation (3) and then estimating the 
eigenvector using equation (4). The alternatives' contributions towards 
satisfying the attributes are characterized by membership functions u ^ a ) , and 
the alternatives are ranked (fuzzily) using the k-values derived before and 
invoking equation (14). Once the imprecise information is provided in the form 
amenable to fuzzy set analysis, the method is fairly straightforward. 

3. THE HAZARDOUS WASTE DISPOSAL PROBLEM 

We now examine a case where a utility company is considering the disposal of 
PCB-contaminated transformer fluids at one of three fossil fuel fired generating 
plants (for details see [19]). All the plants need modifications to facilitate the 
disposal of the hazardous waste, but only one can be chosen due to cost constraints. 
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Criterion 

Table 2. Site Selection/Evaluation Criteria 

Characteristic 

Air Quality 

Surface Water Quality 

Groundwater Quality 

Ecology 

Aesthetics 

Demography 

Land Use 

Emergency Response 

Transportation 

Opposition 

Dispersive capabilities of site/plant combination and 
degree to which waste emissions could concentrate 
onsite or offsite 

Potential for surface water degradation due to spills 
associated with handling and storage of waste 

Potential for groundwater degradation due to spills 
associated with handling and storage of waste 
(includes leaching into aquifer) 

Potential impact on ecological resources of area due 
to routine operations or emergency conditions 

Visual impacts of hazardous waste operations, 
including handling, storage, and disposal 

Potential long term exposure to emissions due to 
routine operations or emergencies 

Compatibility of the surrounding land use with the 
hazardous waste operation 

Ability of a response team to combat an emergency 
associated with a spill or other exposure 

Distance through which the waste should travel to get 
to site 

Political or other organized intervention or opposition 
to the hazardous waste operation 

Source: Horsak and Damico [19]. 

The plants are to be evaluated on the basis of ten attributes. Table 2 provides 
a list of these criteria and a description of why they are important for the 
hazardous waste disposal problem. The criteria themselves were rated by 
twenty-seven individuals who were chosen as a representative cross section of 
domain specific experts. These preference weights (scaling constants) are given 
in Table 3. Numerical ratings for the degree by which each alternative satisfies 
each criterion is given in Table 4. 

The information given in Tables 3 and 4 is subject to the following 
considerations: 

1. the data on preference weights were obtained by getting the experts to 
respond in a "fuzzy" semantic way using definitions given in Table 1, then 
estimating the eigenvector corresponding to the maximum eigenvalue as 
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Table 3. Rating of Criteria 

Criterion 

1. Air Quality 

2. Surface Water Quality 

3. Groundwater Quality 

4. Ecology 

5. Aesthetics 

6. Demography 

7. Land Use 

8. Transportation 

9. Emergency Response 

10. Opposition 

Rating 

0.161 

0.156 

0.148 

0.115 

0.111 

0.106 

0.074 

0.052 

0.046 

0.031 

Order of Im 

1 

2 

3 

4 

5 

6 

7 

8 

g 

10 

Source: Horsak and Damico [ 1 9 ] . 

given by equation (4), and finally normalizing the eigenvalue to obtain the 
weights; thus, we can consider the information in Table 3 at best as 
"fuzzy," but as reflecting the true ordinal preference structure; and 

2. a similar argument is made for the rating of how the alternative sites satisfy 
the criteria (attributes); thus, the data given in Table 4 are not value scores 
in the Raiffa-Keeney sense [9], and are fuzzy ratings which, again, would 
reflect true rankings of the alternatives. 

4. SELECTION OF WASTE DISPOSAL SITES 

Siting Decision With Cardinal Values 
and Imprecise Preferences 

First, make note of the fact that besides making the decision on the optimal 
site for disposing the hazardous waste, we are also examining the relative merits 
of the decision theory and fuzzy set methodologies for this case. 

From Table 3 we see that the Air Quality attribute has the largest weight and 
Opposition has the lowest weight. We select the "best" (i.e., non-dominated) 
hazardous waste disposal site, by using the methodology developed on pp. 74-75. 
First we need to order the attributes according to decreasing preference, and 
next obtain the sum of value scores as in equation (2). Table 5 gives details of 
the calculation. Clearly we see that the value sum for plant A dominates 
everywhere the value sum for the other alternatives. Thus, the optimal choice 
is plant A. 
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Table 4. Rating of Alternatives for Each Criterion 
(Ordinal Ranking in Parenthesis) 

Criterion 

1. Air Quality 

2. Surface Water Quality 

3. Groundwater Quality 

4. Ecology 

5. Aesthetics 

6. Demography 

7. Land Use 

8. Transportation 

9. Emergency Response 

10. Opposition 

Source: Horsak and Damico [19 ] . 

Now we will use the ratings given in Table 3, which were obtained by 
normalizing the eigenvector corresponding to the largest eigenvalue (which is 
the fuzzy set methodology described on pp. 74-75 and equation (4)). The 
aggregated value scores for the three alternatives then are: 

Plant A = 0.837, Plant B = 0.787, Plant C = 0.516. 

Here, too, plant A would be the optimal site. Thus, whether purely ordinal 
weights are considered or whether linguistic responses are transformed using 
fuzzy set techniques into cardinal weights, the site selected would be plant A. 
For this case it seems that techniques based on decision theory which require 
just ordinal information would be superior because of the lower information 
requirements. 

Alternative Plants 

A 

0.9 
(1 

0.8 
(2 

1.0 
(1 
0.9 
(1 

0.8 
(3 

1.0 
(1 

0.8 
(1 

0.8 
(1 

1.0 
(1 
0.5 
(2 

B 

0.7 
2 

0.9 
1 

1.0 
1 

0.9 
1 

0.9 
2 

0.5 
2 

0.6 
2 

0.5 
2 

0.6 
2 

1.0 
1 

C 

0.3 
3) 

0.2 
3) 

1.0 
1) 

0.2 
2) 

1.0 
1) 

1.0 
1) 

0.2 
3) 

0.2 
3) 

0.3 
3) 

0.3 
3) 
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Table 5. Site Selection: Cardinal Values—Imprecise Preferences 

Attributes8 

8 

0.7 1.0 0.6 0.5 0.9 0.9 1.0 0.5 

1.7 2.3 2.8 3.7 4.6 5.6 6.1 

10 

Plant A 

Value Scored 0.9 1.0 1.0 1.0 0.9 0.8 0.5 0.8 0.8 0.8 

Value Sum 1.9 2.9 3.9 4.8 5.6 6.1 6.9 7.7 8.5 

Plant B 

Value Score 

Value Sum 

0.6 0.9 

6.7 7.6 

Plant C 

Value Score 

Value Sum 

0.3 1.0 0.3 1.0 0.2 0.2 0.3 0.2 0.2 1.0 

1.3 1.6 2.6 2.8 3.0 3.3 3.5 3.7 4.7 

Optimal Choice: Plant A 

8 Note: See Table 3 for description of attribute. 

Siting Decision With Imprecise Values 
and Cardinal Weights 

Although the preference weights (scaling constants) given in Table 3 were 
obtained thorugh the maximum eigenvector method proposed by Yager [14], 
we will assume that they reflect true decision maker preferences precisely (i.e., 
not fuzzily). The value scores are not given, instead the order in which each 
alternative satisfies each attribute is specified (see Table 4). In order to select 
the optimal site, we use the Cook-Seiford [13] method described on pp. 75-77. 

The "decision matrix" D is obtained by estimating its elements di} from 
equation (12). Table 6(a) presents this matrix along with a sample calculation 
for djj. The assignment linear program (equations (7) through (11)) yields the 
priority assignment as in Table 6(b). The optimal priority vector is [ABC] in 
that order; i.e., plant A is the optimal site. 

In ordor to use the fuzzy set methodology, we derive weighted values using 
equation (14) and the fuzzy ratings given in Table 4. (Table 7 gives the weighted 
value estimations.) The optimal fuzzy decision is (using equation (15)), plant A 
with membership function 0.966 which shows that the optimal decision is 
almost precisely that. Given cardinal weights for the preferences among the 
attributes, the decision would be the same, in this case, whether ordinal value 
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Table 6. Ordinal Values 

(a) Decision Matrix 

Priority 

1 2 3_ 

1 0.409 0.924 1.591 

Alternatives 2 0.550 0.450 1.450 

3 1.115 0.885 0.845 

d „ = | 1 - 1 1x0.161 + 1 2 - 1 |x0.156 + | 1 - 1 |x0.148 + | 1 - 1 |x0.115 

+ 1 3 - 1 1x0.111 + | 1 - 1 |x0.106 + | 1 - 1 | x0.074 + | 1 - 1 | x0.052 

+ I 1 - 1 I xO.046 + | 2 - 1 | x0.031 = 0.409 

(b) Optimal Assignment 

Priority 

1 2 3 

1 1 0 0 

Alternative 2 0 1 0 

3 0 0 1 

scores are provided or whether fuzzy ratings are extracted after further 
investigation (or interviews) with the decision makers. As in the previous 
section, the method based on decision theory seems superior due to the reduced 
information requirement. 

Siting Decision with Imprecise Values 
and Preference Weights 

We should note at the outset that the calculations reported in the previous 
section were based on fuzzy responses for both values scores (which were given 
as ratings) and preference weights (which were initially given by semantic 
responses, then translated into the normalized maximum eigenvector). Thus, the 
fuzzy set result based on imprecise values and preferences is exactly the same as 
in the previous section: the optimal site is plant A. 
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Table 7. Weighted Value 

1. 

2. 

3. 

4. 

5. 

6. 

7. 

8. 

9. 

10. 

Criterion 

Air Quality 

Surface Water Quality 

Groundwater Quality 

Ecology 

Aesthetics 

Demography 

Land Use 

Transportation 

Emergency Response 

Opposition 

Minimum 

A 

0.983 

0.966 

1.000 

0.988 

0.976 

1.000 

0.983 

0.988 

1.000 

0.979 

0.966 

Alternative 

B 

0.944 

0.984 

1.000 

0.988 

0.988 

0.929 

0.963 

0.965 

0.977 

1.000 

0.929 

C 

0.824 

0.778 

1.000 

0.831 

0.774 

1.000 

0.888 

0.920 

0.946 

0.963 

0.774 

In the case of the decision theoretic methodology we use value scores and 
preferences, given by the ordinal information in Tables 3 and 4. The decision 
matrix is calculated in terms of the k's using equation (12) and is presented in 
Table 8. The aggregated value scores for the different priorities for the 
alternatives are given in Table 9. Using this and the fact that the priority ranking 
of preferences (Table 3) is kl > k2 > . . . > k10, we find that the best 
(non-dominated) priority vector is IV which gives plant C as the optimal site. 
Plant A comes second. 

This is quite surprising since all analysis until now has resulted in plant A 
being optimal and indicated that plant C is the worst. Indeed, if the aggregate 
values are computed using the k-values indicated in Table 3, priority vector I 
becomes optimal. Thus, using the decision theoretic technique in case where 
both the value score and preference weight are given in ordinal terms would be 
suspect. 

5. CONCLUDING REMARKS 
We have presented methodologies based on multi-attribute utility theory 

(MAUT) and fuzzy set analysis for doing decision analysis imprecisely but 
rigorously. Although there may be imprecision in the inputs, precise decisions 
could be made in both methodologies. The main focus of the article was to 
apply these methodologies to the problem of selecting a hazardous waste disposal 
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Table 8. Decision Matrix 

Alternative 1 

2 

3 

1 

k2+2k5+k10 

k.,+lcB+ke+k7 

+k8+k9 

2k1+2k2+k4 

+2k7+2k8+2k9 

+2k10 

Priority 

2 

k,+k3+k4+k5 

+k6+k7+k8+k9 

k2+k3+k4+k5 

k1+k2+k3+k5 

+k6+k7+k8+k9 

+kio 

3 

2k1+k2+2k3+2k4 

+2k6+2k7+2k8 

+2k9+k10 

k1+2k2+2k3+2k4 

+k5+k6+k7+k8 

+k9+2k10 

2k3+k4+2k5 

+2k6 

Table 9. Possible Priorities Among Alternatives 

Possibility Priority Vector Aggregate Value 

[ 1 2 3 ] 2k2+3k3+2k4+4k5+2k( 

C10 

2 - ^ 3 t i N 4 .-rivg ' <.i%g 

+k, 

[ 1 3 2 ] 2k1+4k2+3k3+2k4+4k5 

+2k6+2k7+2k8+2kg+4k10 

[ 2 1 3 ] 2 ^ +3k3+2k4+4k! 5 
+4k6+2k7+2k8+2k9 

IV [ 2 3 1 ] 4k1+4k2+3k3+4k4+2k 5 

+2k6+4k7+4k8+4k9+4k10 

V [ 3 1 2 ] 4k1+2k2+3k3+2k4+k5 

+4k6+4k7+4k8+4k9+2k10 

VI [ 3 2 1 ] 4k1+4k2+3k3+4k4+k 2 ~~3 ™ 4 ~ 5 
+2k6+4k7+4k8+4k9+3k10 
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site where the alternatives were evaluated on the basis of multiple criteria (or 
objectives). In the particular case study examined, plant A was chosen as the 
optimal site under almost all conditions of impreciseness. 

The relative merits of the two approaches are also examined. In the case 
study, the MAUT approach proved superior to the fuzzy set approach in the 
cases where the imprecision was either in the value score or in the preference 
weights (scaling constants) but not both. Both methodologies gave the same 
result but the MAUT based approaches required no more than ordinal 
information on the imprecise parameters. On the other hand, in the case where 
both preference weights and value scores are known imprecisely, the MAUT 
approach results in a clear decision which is suspect considering the many other 
cases studied. Thus, we would recommend the fuzzy set approach for the case 
of complete impreciseness. In such a case, the decision maker would have to 
provide more precise information than ordering among the parameters. 

We would argue that the results from our case study could be generalized: the 
MAUT based approach would be most suitable when the decision maker 
responds with ordinal information on either the value scores or preference 
weights but not both. If the decision maker can only provide ordinal 
information on both, the fuzzy set approach is most suitable. As Watson et al., 
have pointed out [20], the danger in using fuzzy decision analysis is that the 
methodology is not that transparent to decision makers. In addition, the 
foundations of fuzzy-set theory are yet to be based firmly on philosophical and 
psychological grounds. Thus, while we agree with the conclusions of Watson 
et al. that "there are some theoretical reasons for preferring the fuzzy to the 
probabilistic" [20], and would add from our experience that it would be 
advantageous to use fuzzy set methodologies in cases of complete impreciseness, 
we would hesitate to recommend it strongly even in such a case. 
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