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On the road to metastasis a cancer cell has to overcome two major obstacles: the physical escape from the primary

tumor to a distant tissue and the adaptation to the new microenvironment via colonization and the formation of a

secondary tumor. Accumulated scientific findings support the hypothesis that inflammation is a critical component of

the tumor microenvironment and develops as a result of tumor-induced recruitment of inflammatory cells and their

reciprocal interaction with other cells from the tumor network. These interactions modulate immune responses to

suppress antitumor immunity and activate feedback amplification signaling loops that link nearly all the cells in the

cancer inflammatory milieu. The coordinated regulation of cytokines/chemokines, receptors and other inflammatory

mediators enables the different steps of the metastatic cascade. As a target organ for colonization, the bone is rich in

inflammatory mediators that are critical for successful cancer growth. In this review, we focus on the inflammatory cells,

molecules and mechanisms that facilitate the expansion of cancer cells from the primary tumor to their new ‘home’ in the

skeleton.
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Introduction

Inflammation is a response of the organism to resolve infection,
tissue injury or other cellular trauma, and it involves the repair
mechanisms that restore the functionality of tissues.1

Experimental findings demonstrate that the tumor micro-
environment is steeped with inflammation, including a high
infiltration of immune cells and the expression of inflammatory
cytokines/chemokines and their receptors.2,3 Cancer and
wound healing share several molecular pathways, and tumors
have been viewed as ‘wounds that do not heal’, where con-
tinuous cell renewal and proliferation is induced by persistent
inflammation.4 In the tumor microenvironment, immune cells
interact with cancer cells leading to the progression, migration
and invasion of tumors.5 The accumulated research evidence
leaves no doubt to recognize inflammation as one of the
hallmarks of cancer.6

About 15–20% of all human tumors originate as a result of
chronic infections and lasting inflammatory conditions—for
example, the association of Helicobacter pylori infection with
gastric cancer, herpes virus with cervical cancer and obesity-
mediated inflammation with liver cancer.7–9 Inflammation is
capable of promoting malignancy through the release of
chemicals that are deleterious for neighboring cells edging
cancer toward the stage of higher malignancy. For example,
reactive oxygen species (ROS), proteases, inflammatory
cytokines and other detrimental factors released by macro-
phages and neutrophils at sites of inflammation have the

potential to damage surrounding tissue by introducing genetic
and epigenetic alterations in critical tumor suppressors or
proto-oncogenes such as tumor protein p53 (TP53), phos-
phatase and tensin homolog (PTEN) and MYC.5,9–13 On the
other hand, the activation of oncogenes and other cancer-
promoting mutations or genetic rearrangements results in the
induction of transcriptional programs that promote an
inflammatory microenvironment.14–16 When the tumor is inci-
pient, both antitumorigenic and protumorigenic inflammatory
signaling concur, but tumor progression results in the
predominance of protumorigenic molecules that shape the
microenvironment and significantly contribute to the cancer
hallmark potentials. This type of inflammation is the source
of survival, growth and proangiogenic factors, as well as
extracellular matrix (ECM)-modifying enzymes that facilitate
vascularization, invasion and metastasis.9,17

In solid carcinomas, when the blood supply becomes
insufficient (noticeably at the tumor core), oxygen and nutrient
depletion occurs, which results in necrotic cell death.
As a consequence, damage-associated molecular patterns
(DAMPs) such as ATP, calreticulin, histones, heat-shock pro-
teins and high-mobility group protein B1 (HMGB1) are exposed
or released, and upon interaction with leukocyte receptors they
stimulate the production of proinflammatory cytokines, such as
interleukin (IL)-1, IL-6 and tumor necrosis factor-a (TNFa),
or other mediators that modulate the immune responses
causing tumor progression.18–20 Importantly, DAMPs can
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induce immunogenic cell death with the activation of antitumor
immunity.21–24

Besides the immune cells, cancer-associated fibroblasts
(CAFs) are an important component of tumor stroma. CAFs
secrete stromal cell-derived factor 1 (SDF1, also known as
chemokine C-X-C motif ligand 12 (CXCL12)), which stimulates
tumor growth and angiogenesis by recruiting endothelial
progenitor cells.25 CAFs are also involved in the homing of
metastatic cells to the bone marrow through the expression of
CXCL12 and insulin-like growth factor 1 (IGF-1), which are
responsible for the selection of the metastatic cells directed to
high CXCL12-expressing microenvironment.26 Fibroblasts
isolated from mouse models of squamous-cell carcinoma,
mammary and pancreatic cancers showed a proinflammatory
gene signature including the tumor-promoting cytokines (such
as IL-6, IL-1b), chemoattractants of macrophages and
neutrophils (CXCL1, CXCL2 and CXCL5) and matrix-modifying
proteases (such as matrix metalloproteinase 3 (MMP3) and
MMP12). Inflammatory CAFs demonstrated the activation of
nuclear factor-kB (NF-kB) signaling responsible for high
macrophage infiltration, enhanced angiogenesis and tumor
growth.27 Therefore, the persistent nonresolving inflammation
that characterizes the tumor microenvironment originates
tissue damage via increased cell necrosis. When tissue-
resident phagocytes (predominantly macrophages and
neutrophils) remove these cells they generate an inflammatory
response,28 which develops into a vicious cycle that fuels tumor
progression.

Inflammation and Metastasis

About 90% of cancer-related deaths are caused by metastasis.
Metastasis is a multistep process that involves two major
stages: the escape of the cancer cell from the primary tumor to a
distant site and the adaptation of the disseminated cell to the
new microenvironment with organ colonization.29 A critical step
in the first phase is the activation of a regulatory program known
as the epithelial to mesenchymal transition (EMT).30 EMT
involves profound alterations in gene expression and
morphology associated with the downregulation of cell
adhesion proteins, such as E-cadherin (E-cad).31 When epi-
thelial cancer cells undergo EMT, they acquire mesenchymal
characteristics with an invasive ability to dissociate from the
primary tumor and enter the circulation. These circulating cells
are capable of disseminating, and they survive until they
encounter a favorable niche where they can proliferate to form
metastasis. Continuous inflammation is linked to the activation
of the EMT program, which correlates with the expression of
inflammatory mediators and myeloid cell infiltration. EMT
occurs at the invasive front of tumors, where macrophage
numbers are high.32,33 Macrophages are one of the major
immune infiltrates in tumors,2 and the number of CD68þ tumor-
associated macrophages has been convincingly associated
with poor outcomes and treatment failures.34

Macrophages have been classified into M1 or M2 according
to functional activation in response to environmental signals.
M1s are activated by microbial signals or interferon-g and are
capable of killing tumor cells, whereas M2s are protumorigenic,
promote angiogenesis, tissue repair, remodeling and have
a role in the resolution of inflammation.35 M2s are activated by
T helper (Th2) cytokines such as IL-4 and IL-13. In the

tumor microenvironment, macrophages are generally polarized
toward the M2-like phenotype,36 where they develop a
prometastatic function, as illustrated in a model of mammary
carcinogenesis.37 In this case, CD4þ T lymphocytes expres-
sing IL-4 induced the M2-like characteristics of tumor
macrophages with elevated epidermal growth factor expres-
sion that increased the metastatic potential of cancer cells.37

Furthermore, IL-4-activated M2-like macrophages express
chemokine C-C motif ligand 18 (CCL18) and promote invasion
and metastasis by enhancing the adherence of cancer cells to
the ECM.38,39

Tumor cells can subvert the function of macrophages and
take advantage of their signaling to escape from the primary
tumor. For example, experimental findings showed that
Snail (also known as zinc-finger protein SNAI1), a crucial
EMT-inducer transcription factor that represses the expression
of E-cad, was stabilized by the macrophage-derived
inflammatory cytokine TNFa, which involved the activation of
the NF-kB signaling pathway.40 Snail stabilization was
demonstrated to be critical to promote cell migration and
metastasis. In support of this relationship, lipopolysaccharide
(LPS)-induced inflammation and TNFa expression by
hematopoietic cells resulted in the activation of NF-kB in cancer
cells and metastatic tumor progression in a mouse model of
colon carcinoma.41 However, when NF-kB was inhibited in
cancer cells, LPS reverted the growth response into tumor
regression through the upregulation of TNF-related apoptosis-
inducing ligand (TRAIL) and the activation of TRAIL receptor
(TNF receptor superfamily member 10b). NF-kB has also been
connected with the activation of EMT through regulation of
crucial EMT inducers such as the zinc-finger E-box-binding
homeobox (ZEB) family of transcription factors.42–44 Additional
evidence linking inflammation and EMT was revealed recently,
as M2-like (macrophage colony-stimulating factor (M-CSF; also
known as colony-stimulating factor 1 (CSF1)) and IL-4-treated)
macrophages were capable of inducing a stable-EMT program
in prostate cancer cells, which involved the regulation of the
transcription factor ZEB1.45 These EMT cells demonstrated
an increased metastatic potential in vivo and were capable
of proliferating and colonizing a distant site.45 Of note,
a recent study in models of head and neck and breast cancer
revealed how TNFa-mediated Snail acetylation regulated its
transcriptional activity to control the expression of crucial
EMT genes. Snail acetylation further activated the feedback
expression of TNFa, CCL2 (also known as monocyte
chemotactic protein-1 (MCP-1)) and CCL5 to promote macro-
phage infiltration, M2 polarization and increased metastasis.46

Inflammation in EMT is a critical step in metastasis. A breast
cancer study found that activation-induced cytidine deaminase
(AID/AICDA), an enzyme implicated in DNA demethylation and
cell reprograming,47,48 was required for EMT, as it regulated the
methylation of crucial genes involved in this transition.49 These
findings suggest that AID may have a critical role in early stages
of metastasis. As AID is induced by inflammatory cytokines
such as TNFa and its expression has been correlated with
chronic inflammation and tumor progression,11,50–52 these
results implicate inflammation in EMT. Other findings in a mouse
model of pancreatic cancer identified EMT as an early event in
the dissemination of malignant cells, where it preceded tumor
formation and was facilitated by inflammation. When the mice
were treated with the anti-inflammatory drug dexamethasone,
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they demonstrated a radical suppression of cancer
dissemination.53

The inflammatory cytokine IL-6 is elevated during several
tumorigenic processes in correlation with tumor grade and poor
survival.54,55 IL-6 induces EMT in breast cancer cells,56 which
could be a consequence of continuous signal transducer and
activator of transcription 3 (STAT3) activation that leads to the
downregulation of crucial EMT-regulatory microRNAs.57 An
interesting report illustrates how tumor-derived IL-6 and IL-8
(CXCL8) attract circulating tumor cells (CTCs) to the original
tumors (termed as ‘tumor self-seeding’) and influence tumor
progression and metastasis through the selection of the most
aggressive cancer cells.58 Furthermore, tumor self-seeding
induced an increase in infiltrating myeloid cells, significantly
macrophages and neutrophils, which promote an inflammatory
microenvironment and stimulate the expression of IL-6, IL-8
and other tumor-promoting factors.8,58

The chemokine CCL2 has been correlated with poor
prognosis in cancer patients.59 In a mouse model of breast
cancer metastasis, it was determined that CCL2 facilitated
metastasis by attracting inflammatory Gr1þ /CCR2þ mono-
cytes to the tumor microenvironment of lung metastases.60

In this model, which resembles human metastasis, the
inflammatory monocytes promoted the extravasation of tumor
cells, which was mediated by the vascular endothelial growth
factor (VEGF). CCL2 produced by CAFs has been implicated in
the mechanism of EMT by inducing the expression of fibroblast
growth factor receptor 4 (FGFR4) in colorectal cancer.61 In
addition, CCL2 activates endothelial cells through the che-
mokine receptor CCR2 to increase vascular permeability and
promote cancer cell extravasation and metastatic dis-
semination in a model of colon cancer.62

In mouse models of lung metastasis, the inflammatory protein
S100A8 induced serum amyloid A3 (SAA3) to activate NF-kB
signaling via the toll-like receptor 4 (TLR4) in endothelial cells
and macrophages. This resulted in high myeloid cell infiltration,
and it accelerated the migration of primary tumor cells to lungs
to form metastasis.63 The authors suggested that factors such
as S100A8 produced by primary tumors induced the formation
of a premetastatic niche.63,64 Recently, the same group
discovered that CCL2-CRR2 signaling activated the formation
of regions with high vascular permeability, which preceded the
appearance of metastatic lesions.65 It was also determined that
the expression of the inflammatory factors S100A8/A9 and
SAA3 was induced by CCL2 and increased in the regions of
vascular permeability through TLR4 lymphocyte antigen 96
(LY96/MD2) signaling activation in endothelial cells and CD45þ

leucocytes. These results correlated with lung metastasis
patient data for which colocalization of high permeability
related to inflammation and CCR2 expression was observed.65

Overall, CCL2 and IL-6 are critical inflammation-induced
factors that promote cancer progression and metastasis
through multiple mechanisms. Notably, a feedback amplifi-
cation loop between CCL2 and IL-6 has been revealed in human
macrophages, which promote their survival and the M2-like
phenotype.66

Accumulated experimental findings provide evidence that in
the tumor microenvironment tumor cells and macrophages
establish a symbiotic relationship, where macrophages
generate an inflammatory microenvironment in favor of cancer
growth. In return, macrophages are rewarded with factors that

promote their survival, activation and proliferation such as
tumor-derived M-CSF.67 A feedback loop has been suggested,
which links the macrophage production of cytokines IL-1 and
TNF with the induction of colony-stimulating factors (M-CSF,
granulocyte–macrophage colony-stimulating factor (GM-CSF)
and granulocyte colony-stimulating factor (G-CSF)) in the
surrounding cells of the inflammatory microenvironment such
as Tcells, endothelial cells, fibroblasts and epithelial cells.68–73

The CSFs can further promote the proliferation/survival or
activation of macrophages and neutrophils to enhance the
production of factors that sustain a chronic inflammatory stage.
The analysis of Lewis lung carcinoma (LLC) cell-secreted
factors further revealed the complex interactions in the tumor
milieu. The ECM protein versican (VCAN) produced by cancer
cells was identified as a powerful inducer of the inflammatory
cytokines IL-6 and TNFa in macrophages upon the activation of
TLR2/TLR6 receptors.74 In LLC mouse models, the authors
validated that both TNFa and TLR2 were essential for
metastasis. The expression of VCAN also potentiated mac-
rophage infiltration and lung metastasis in a mouse model of
invasive bladder cancer.75 However, the blockage of the CCL2/
CCR2 axis with neutralizing antibodies or by using CCL2� /�

and CCR2� /� knockout mice reduced macrophage infiltration,
which correlated with a significant decrease in the number of
metastases. Similarly, direct macrophage ablation also
decreased lung metastases and the expression levels of
proinflammatory factors IL-6, CCL2 and cytochrome C oxidase
2 (COX2) in the tumor microenvironment.75 Altogether, these
findings illustrate how cancer cells produce factors that build
the ECM, such as VCAN, to generate an inflammatory
microenvironment that promotes the metastatic growth.

By interacting with cancer cells, macrophages can facilitate
their intravasation into the blood and lymphatic vessels and
travel together in the circulation to promote dissemination and
metastasis.76,77 For example, COX2-expressing macrophages
infiltrate the LLC tumors expressing the inflammatory cytokine
IL-1a, and they are required for angiogenesis and tumor
progression mediated by this cytokine.78 These findings
highlight the crucial role of macrophages in inflammation-
mediated tumor vascularization and progression.

Myeloid-derived cells facilitate metastatic seeding at distant
organs. Interesting findings suggest that VEGF receptor 1
(VEGFR1)þ bone marrow-derived hematopoietic progenitor
cells create a premetastatic niche that promotes cancer
adherence and growth.79 These cells are directed to specific
sites via factors expressed in the primary tumor to condition the
distant sites for metastasis. Furthermore, these cells expressed
the cluster of differentiation molecule 11b (CD11b), which is
found on the surface of myeloid cells including monocytes and
macrophages.64,80,81

Tumor-infiltrated myeloid cells express MMPs (MMP2, MMP9
MMP12, MMP13 and MMP14) and other proteases such
as cathepsins, which enhance angiogenesis, invasion and
metastasis.81–84 By controlling the proteolytic cleavage of ECM
components and chemokines, MMPs increase the infiltration of
inflammatory cells providing a regulatory loop that enhances
metastasis.15,85 Chemokines and their receptors such as the
CXCL12/CXCR4 and CXCL5/CXCR2 axes have been impli-
cated in the accumulation of CD11bþ /Gr1þ myeloid cells in the
tumor microenvironment.81 Myeloid cells also mediate the
mechanistic interactions between different cells in the tumor
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milieu. For example, a signaling mechanism identified in breast
carcinoma connected myeloid, endothelial and cancer cells to
facilitate metastasis.86 In the study, CXCL1 and CXCL2 pro-
duced by cancer cells recruited myeloid (CD11bþ /Gr1þ ) cells
that expressed proinflammatory factors S100A8/9, which
enhanced tumor survival, metastasis and resistance to chemo-
therapy. Feedback signaling originated when TNF-a produced
by endothelial cells in response to chemotherapeutic drugs
activated the expression of CXCL1/2 in cancer cells.86

Furthermore, in a melanoma model, myeloid cell-derived IL-1b
induced paracrine VEGF expression in endothelial cells and the
activation of an amplification loop that promoted angiogenesis,
inflammation and tumor progression.87

In addition to their role in metastasis and chemoresistance,
myeloid cells (CD11bþ /Gr1þ ) suppress the antitumor
response mediated by CD8þ T cells.88 In this model of pan-
creatic carcinoma, tumor cells produced GM-CSF driving the
recruitment and development of suppressive CD11bþ /Gr1þ

cells. These myeloid-derived suppressor cells (MDSCs)
comprise a heterogeneous group of myeloid progenitors and
immature cells with different phenotypes and a potent immune-
suppressor activity.89 Two main MDSC subgroups have been
identified in mouse tumor models: the cells with granulocytic
(polymorphonuclear) morphology characterized by the surface
coexpression of CD11bþLy6GþLy6Clow and the monocytic
phenotype with the markers CD11bþLy6G-Ly6Chigh.90 The
MDSC subgroups in these models also differ by mechanisms of
T-cell suppression: the granulocytic MDSCs generate high
levels of ROS and low nitric oxide (NO), whereas the monocytic
MDSCs show nearly an opposite pattern (NOhigh/ROSlow). In the
majority of murine tumor models the granulocytic MDSCs are
the predominant subgroup. Another suppression mechanism
common to both subgroups is the production of arginase 1,
which induces T-cell suppression via depletion of L-arginine.89

Clinical findings in cancer patients correlate the number of
MDSCs in the blood with poor prognosis and metastatic
progression.91 Proinflammatory cytokines such as IL-1b and
IL-6 have been implicated in the accumulation of MDSCs in the
tumor milieu.92–94 Furthermore, CXCL1, CXCL2 and CXCL5
chemokines and the CXCR2 receptor have been associated
with the infiltration of granulocytic MDSCs (CD11bþLy6Ghigh)
from the circulation into the inflammatory tumor micro-
environment.95 These CXCR2þ MDSCs accelerated tumor-
igenesis induced by chronic inflammation by suppressing the
cytotoxicity of CD8þ T cells.

Some reports connect MDSCs with the induction of forkhead
box P3 (FOXP3þ ) regulatory T (Treg) cell differentiation and
expansion.96,97 Tregs promote immunosuppression in
the tumor microenvironment, and their accumulation in the
tumor milieu promotes tumor progression and enables
metastasis.98–100 Tregs express galectin-1, a mediator of the
immunosuppressive activity of these cells.101,102 In normal
tissues, Tregs function to maintain immune homeostasis limiting
autoimmune responses; however, cancer cells highjack these
cells to avoid the immune attack. In the tumor microenviron-
ment inflammatory factors recruit Tregs by inducing the
expression in myeloid cells of the chemokine CCL22, a potent
chemoattractant of Treg cells.103 Furthermore, the induction of
CCL22 by transforming growth factor beta (TGFb) in certain
tumor cells has been reported as a critical mechanism for tumor
progression.100

An intriguing report illustrates how a common mutation in the
TLR5 occurring in 7.5% of humans influences cancer growth via
tumor-related inflammation.104 The use of a genetic mouse
model of sarcoma tumorigenesis commensal bacteria promoted
distal tumor progression through TLR5-mediated increase in
systemic IL-6 levels. In turn, IL-6 stimulated the mobilization and
expansion of MDSCs and the tumor infiltration of gdT cells that
secreted galectin-1.105 Further analysis showed similar results in
a murine model of ovarian cancer, whereas TLR5 loss of function
accelerated tumorgrowth in a model of IL-6 unresponsive breast
cancer cells via an increase in systemic IL-17 mediated also
by the commensal microbiota.104 Therefore, TLR5 signaling
regulates systemic inflammation and immune responses
resulting in cancer suppression or progression.

Recent work in a transgenic mouse model of metastatic
melanoma further highlights the link between inflammation and
metastasis. The authors uncovered a mechanism of how
ultraviolet (UV) radiation-induced inflammation and promoted
metastasis without affecting the growth or number of primary
tumors.106 HMGB1 released by damaged UV-treated cells
attracted neutrophils to the tumor. In turn, infiltrated neutrophils
secreted TNFa via HMGB1-TLR4 signaling107 to favor the
formation of blood vessels, the dissemination of tumor cells
through the circulation and lung metastases. Depletion of
neutrophils or their chemoattractant HMGB1 significantly
abolished metastasis.106 These results emphasize how
qneutrophils mediate an inflammatory response facilitating the
interactions between tumor cells and blood vessels to enable
tumor dissemination and progression. Other studies in different
cancer types implicate inflammation-mediated neutrophil
infiltration and their interaction with cancer cells in angio-
genesis, metastasis and tumor progression.108–111

Further experimental evidence suggests the role of inflam-
matory neutrophils in the stabilization of CTCs, cancer cell
adhesion to distant organs, tumor-endothelial interactions and
resulting metastasis.112,113 For instance, an intriguing report
indicates that neutrophils protect CTCs by trapping them in an
extracellular DNA net to promote cancer dissemination
and metastasis.114 Altogether, these findings suggest that
neutrophils are crucial mediators of metastasis-related
inflammation.115 However, it is worth noting that there are
instances in which these cells turn into an antimetastatic
shield.116,117 Furthermore, similar to macrophages, neutrophil
functional plasticity in response to environmental signals has
been suggested118 by classifying them into N1 (antitumoral) and
N2 (protumoral) phenotypes.119 Using mesothelioma and lung
cancer models, it was discovered that blocking TGFb increased
cytotoxic neutrophil (CD11bþ /Ly6Gþ ) infiltration mediated by
CXCL2 and CXCL5.119 These neutrophils (N1-type) activated
CD8þ T lymphocytes with an overall antitumor response, and
their depletion significantly reversed this effect supporting
tumor growth. Therefore, it was proposed that TGFb, expressed
by many cancer cells, functioned as an immunosuppressive
cytokine modulating the neutrophil polarization toward the
protumorigenic N2-type.119

In summary, convincing findings suggest that sustained
inflammation in the tumor microenvironment suppresses
antitumor immune responses and triggers feedback amplifi-
cation loops that enable EMT, dissemination and the distant
seeding of the cancer cells (Figure 1).
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Molecular Pathways of Metastasis-promoting Inflammation

Identification of the molecular pathways that define cell–cell
interactions leading to protumor or antitumor outcomes
remains a challenge. Two transcription factors, NF-kB and
STAT3, have emerged as crucial regulators of these responses
in the inflammatory tumor microenvironment. These factors co-
regulate several genes that are critical for cancer survival,
proliferation and metastasis.120 NF-kB is activated downstream
of the TLR-MyD88 pathway and other inflammatory signals and
cytokines such as TNFa, IL1a, IL-1b and HMGB1.19,40,41,63,121

Furthermore, key activators of STAT3 or NF-kB such as the
proinflammatory mediators IL-6, IL-8, IL-17, IL-21, IL-23, IL-1b,
CCL2 and COX2 are also common targets of both STAT3 and
NF-kB.120,122,123 Because these factors are abundant in the
tumor microenvironment, both NF-kB and STAT3 are steadily
activated in cancer, immune and other stromal cells where they
further stimulate the production of inflammatory mediators that
trigger amplification loops.120,124,125 Consequently, in the tumor
microenvironment, activation of STAT3 can lead to increased
NF-kB activity and vice versa. Interestingly, the NF-kB subunit
RELA (p65) is constitutively activated in tumors and largely
induces the expression of tumor-promoting inflammatory
factors. Another NF-kB protein REL, rarely activated in tumors,
primarily regulates the cytokines/chemokines associated with
antitumoral responses.120 In addition, genetic mutations that
lead to constitutive STAT3 activation have been identified in
inflammatory human epithelial tumors.126

Subsequently, in the tumor microenvironment, the proin-
flammatory signals can be transmitted from one cell to another,
which promotes a chronic inflammatory status.125 NF-kB can
both orchestrate the tumor-promoting inflammation19,121,123,127

and antitumor immune responses.9,128 However, STAT3 has
been found to mediate the protumoral/immunosuppressive
activity of macrophages and MDSCs, yet opposes the pro-
duction of antitumoral Th1 cytokines, such as IL-12 and INFg,
whose expression is regulated by NF-kB signaling.124,125,129,130

In addition, STAT3 was shown to directly regulate the
expression of the protumorigenic cytokine IL-23 in tumor-
associated macrophages.129 In turn, IL-23 activated a signaling
in Tregs via its receptor (IL-23R) to enhance FOXP3 expression
critical to maintain their immune-suppressor function in the
tumor microenvironment.131 Furthermore, a mechanism eluci-
dated in cancer- and tumor-associated myeloid cells shows
that continuous STAT3 activation enhances p300-mediated
RELA acetylation, which retains RELA in the nucleus to sustain
NF-kB activity.132 Ablation of STAT3 in tumor-associated
myeloid cells significantly reduced the RELA activity in the
tumor milieu including the CD11bþ myeloid infiltrate.132,133

A hypothesis was suggested that when both STAT3 and NF-kB
are activated in the same cell they induce the expression of
protumorigenic inflammatory signals.120 Accordingly, con-
tinuous STAT3 activation in the tumor microenvironment
(including the immune cells) selectively favored NF-kB binding
to the promoters of genes containing STAT3 DNA-binding sites,

Figure 1 The inflammatory tumor microenvironment provides a metastatic route for cancer cells. Cancer cells (CC) produce chemokines and other inflammatory mediators such
as IL-6, IL-1b, TNFa, CCL2 and CXCL1/5 that are strong chemoattractants and activators of myeloid-lineage immune cells including monocytes/macrophages (Mf) and neutrophils
(N). Activated immune cells trigger feedback amplification loops with further production of proinflammatory mediators, resulting in a chronic inflammatory state and increased tumor
infiltration of myeloid cells. Upon interaction with cancer cells, tumor-infiltrated myeloid cells (CD11bþ /Gr1þ , Mf, N) express cytokines/chemokines such as TNFa, IL-6 and CCL2
that induce epithelial to mesenchymal transition (EMT), survival, proliferation and stimulate angiogenesis in the tumor microenvironment. Myeloid-lineage cells also suppress the
antitumor immune responses and the activation of cytotoxic CD8þ -T lymphocytes (T). Inflammation in the microenvironment results in enhanced stress and necrotic/apoptotic cell
death, which leads to HMGB1 release, and triggers the production of TNFa by infiltrated neutrophils through the interaction with TLR4 receptor. Dying cancer cells are phagocytized
by macrophages (efferocytosis) to induce their polarization into M2-like macrophages that activate protumoral Th2 responses. Furthermore, myeloid cells facilitate the intravasation
and extravasation of EMT-transformed cancer cells through the activation of zones of high vascular permeability in the endothelial barriers. CCL2, S100A8-SAA3 and TNFa induce
vascular permeability via their receptors CCR2, TLR4 and TNFR in endothelial cells, neutrophils and macrophages. Once in the circulation, neutrophils protect tumor cells (CTCs) by
trapping them in a DNA web and together with monocytes and other myeloid cells mediate their extravasation and seeding at the distant metastatic niche. The conditioning of
premetastatic niches is promoted by the accumulation of myeloid (CD11bþ ) cells with activated integrina4b1 and the receptors S1PR1 and VEGFR1, which facilitate the seeding of
metastatic cells. Enhanced inflammation and the accumulation of myeloid cells results in the increased production of VEGF by endothelial and myeloid cells and a higher expression
of MMPs that stimulate angiogenesis and tumor growth.
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which are also associated with immunosuppression and tumor-
promoting inflammation.134 In contrast, genetic ablation of
STAT3 in myeloid cells increased NF-kB activity associated with
the expression of genes that mediate the antitumor immune
responses such as INFg, INFb, IL-12 and CXCL10.134 Therefore,
in the tumor microenvironment, STAT3 prevented the NF-kB-
mediated expression of Th1 responsive genes, while enhancing
the NF-kB binding and activity in favor of tumorigenesis.
Altogether, these findings suggest that the cross talk between
STAT3 and NF-kB signaling in the tumor microenvironment
is a crucial determinant of inflammation-associated tumor
progression.

A recent study in a mouse model of colorectal cancer showed
that loss of the tumor suppressor p53 in intestinal epithelial cells
enhanced the activation of the IkB kinase (IKK)-b-NF-kB
pathway to generate an inflammatory microenvironment and
the activation of the EMT program permitting cancer pro-
gression, invasion and metastasis.135 Loss of p53 induced the
EMT-activating transcription factor Twist and the accumulation
of myeloid cells, which in turn produced proinflammatory
factors (such as CXCL1, CXCL2, CCL2 and COX2) capable of
paracrine STAT3 activation in tumor cells.135 Inflammation-
mediated NF-kB activation also induces EMTand metastasis in
breast cancer.40,136 The activation of oncogenes leading to
inflammation that triggers the NF-kB pathway has also been
described. For example, in a genetic mouse model of hepa-
tocellular carcinoma the oncogenic activation of b-catenin
induced an NF-kB-mediated inflammatory response that
determined the degree of tumor aggressiveness.137

Persistent STAT3 activation has been linked not only to
inflammation-induced tumorigenesis but also to the formation
of premetastatic niches conditioning the sites of future distant
metastases.138–141 An amplification loop identified in tumors
links the sphingosine 1-phosphate (S1P) signaling through the
S1P receptor 1 (S1PR1) and the activation of STAT3, which in
turn feeds back to upregulate S1PR1.133 This pathway results in
the upregulation of S1PR1 in the tumor microenvironment
leading to continuous STAT3 activation in cancer cells inducing
the expression of factors that trigger the same pathway in
myeloid cells.138 This signaling allows STAT3-activated myeloid
cells to invade, survive and proliferate at the distant pre-
metastatic sites to facilitate the colonization of cancer cells at
the preselected site. Of note, the analysis of lymph nodes from
prostate and melanoma cancer patients revealed the accu-
mulation of CD68þ myeloid cells before detecting a metastatic
growth.138 Other studies suggest that cancer cells preferentially
metastasize at sites at which the expression of specific tumor-
promoting factors mimics the primary tumor conditions.26

Accordingly, myeloid cells may function as the initial ‘task force’
that selects and prepares the future metastatic site to resemble
the primary site, a process that could be enhanced by tumor
self-seeding.58

Recent findings suggest another mechanism that leads to
STAT3 activation in bone marrow-derived macrophages.142 The
study revealed that macrophage-mediated phagocytosis of
apoptotic tumor cells (a process termed as efferocytosis)
induced STAT3 phosphorylation in macrophages to facilitate
protumor M2-like polarization. As phagocytosis is an essential
function of macrophages, and significant cell death occurs in
the inflammatory tumor microenvironment,142,143 this pathway
may represent important signaling toward the tumor-promoting

function of macrophages. Although this mechanism is awaiting
in vivo validation, in a similar way it could activate other
phagocytic cells such as neutrophils and contribute to pro-
tumoral N2 polarization.119 Future evaluation of this mechanism
in the context of the bone microenvironment may provide
novel targets for therapeutic intervention of skeletal
metastasis.

Although most pathways of metastasis-promoting inflam-
mation converge in the activation of NF-kB and/or STAT3,
different mechanisms that induce the activation of IKKa have
been identified.144–146 In prostate and breast cancer models,
the activation of IKKa by the receptor activator of NF-kB ligand
(RANKL) signaling through RANK promotes metastasis.145,146

Upon activation, IKKa translocates to the cancer cell nucleus
and directly represses the transcription of the metastasis
suppressor maspin (SERPINB5), a mechanism that appears to
be independent of NF-kB. Interestingly, the accumulation of
inflammatory macrophages and Treg (CD4þ /CD25þ /FOXP3þ )
cells was detected in tumors and further identified as major
contributors for RANKL expression.145,146

Diverse mechanisms of inflammation-induced tumor pro-
gression and metastasis stimulate the infiltration and activation
of myeloid cells, which mediate the different steps of the
metastasis from EMT and dissemination through circulation to
distant organ colonization. Myeloid cells induce immunosup-
pression, promote angiogenesis, survival of tumor cells
and prepare distant sites to facilitate tumor growth.89,147–150

Different cytokines/chemokines and inflammatory mediators
are responsible for the accumulation, survival and proliferation
of these cells. Importantly, experimental findings suggest that
the phosphatidylinositol 3-kinase-g (PI3Kg), also known as
p110g, is the main isoform activated in myeloid cells by various
receptor-signaling pathways (GPCR, RTK and TLR/IL-1R) in
response to different ligands (CXCL12, VEGF-A, M-CSF, IL-1b
and IL-6).151 The report illustrates how this isoform, not usually
activated in cancer cells, mediates CD11bþ /Gr1þ myeloid cell
infiltration into tumors through the activation of the a4b1
integrin. PI3Kg inhibition significantly suppressed inflammation,
vascularization, tumor growth and metastasis, consistent
with the role of this myeloid cell population in cancer, and it
illuminates the potential inhibition of this activation to target
cancer-promoting inflammation.151

The Inflammatory Bone Microenvironment as a ‘home’ for
Metastatic Cells

The bone marrow microenvironment is a fertile land for the
seeding and colonization of metastatic cells. Bone marrow-
derived myeloid precursors and other differentiated immune
cells have been heavily implicated in metastasis. Furthermore,
the majority of the signaling mechanisms that promote
inflammation-mediated metastasis are active in the bone
microenvironment, which is a rich source of factors that
promote the proliferation and differentiation of proinflammatory
cells. Although the bone is a frequent target site for several types
of cancer such as prostate and breast cancers,152 only recently
are the signals that direct bone-specific metastasis beginning to
be understood.26,153,154 Importantly, in a dormancy model
of bone-metastatic breast cancer, activation of the NF-kB
pathway in tumor cells induced the expression of the vascular
cell adhesion molecule-1 (VCAM-1). VCAM-1 attracted the
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a4þb1þ -monocytic myeloid (CD11bþ ) cells containing
osteoclast progenitors to enhance osteoclast differentiation
and activity and to promote bone-metastatic colonization.153

Therefore, cancer cell–VCAM-1–a4þb1þ–myeloid interactions
induced the formation and activation of osteoclasts to stimulate
tumor growth. Interestingly, the expression of a4b1 integrin was
shown to be required for hematopoietic cell homing to the bone
marrow.155 VCAM-1 expression can be induced in cancer cells
by proinflammatory cytokines such as IL-1.156 Furthermore, as
outlined above, the activation of a4b1 integrin induced the
recruitment of CD11bþ /Gr1þ myeloid infiltrate into tumors,
which enhanced inflammation and metastasis.95,151 In addition,
activation of a4b1 integrin in myeloid cells can be induced by
chemoattractants and proinflammatory cytokines that are rich
in the bone microenvironment, including CXCL12, M-CSF, IL-
1b, TNFa and IL-6.151 As the mobilization of this myeloid
population to tumors has been shown to mediate tumor
inflammation and metastasis, the VCAM-1-a4b1 axis may
provide a rational link between inflammation and skeletal
metastasis. A different study shows that a4b1-expressing
macrophages foster a survival PI3K-Akt pathway in VCAM-1þ

breast cancer cells, suggesting that VCAM-1-a4b1 interaction
promotes both survival and colonization of tumor cells at sites of
metastasis.157

One of the hallmarks of skeletal metastasis is the alteration of
bone homeostasis, which is accompanied by the production of

ECM-derived factors that enhance tumor growth, invasion and
survival. When ECM is degraded, it releases factors that
stimulate cancer colonization (invasion, survival, proliferation
and immunosuppression) and facilitates the bone remodeling
process. Examples include IGF-1, bone morphogenetic
proteins (BMPs) and TGFb.26,158,159

RANKL is a master regulator of bone resorption, as an
essential factor for osteoclast formation and activation. RANKL
is produced by osteoblasts, marrow stromal cells and T
cells.160–162 Disruption of the balance between RANKL and the
decoy receptor osteoprotegerin results in the deregulation of
bone homeostasis. Most inflammatory cytokines including
TNFa, IL-1 and IL-6 potentiate osteoclastogenesis by inducing
RANKL expression in marrow stromal cells, osteoblasts or by
stimulating RANK expression in myeloid-lineage cells (osteo-
clast precursors).163–165 Of note, TGFb was found to induce the
expression of the FOXP3 transcription factor and to stimulate
the transition of naive T cells into Tregs,166 whereas tumor-
infiltrating Tregs produced RANKL to stimulate metastasis in
breast cancer.146 Similarly, findings in metastatic prostate
cancer suggest that RANKL derived from inflammatory cells
(macrophages and T cells) activates IKKa directly repressing
maspin. In addition, maspin suppressed the progression of
osteolytic lesions in a model of prostate cancer bone
metastasis.167 RANKL stimulates osteoclastogenesis and bone
resorption, causing the release of TGFb and other growth

Figure 2 Inflammation in the bone microenvironment facilitates the colonization of metastatic cancer cells. The bone marrow microenvironment as a source of leukocytes is a rich
inflammatory soil for seeding and colonization of metastatic cells. CXCL12 chemokine produced by bone marrow stromal cells and activated myeloid (CD11bþ /Gr1þ ) cells
expressing the integrin a4b1 facilitate the homing of cancer cells (CC) through interactions with CXCR4 receptor and VCAM-1. Cancer cells and tumor-infiltrating myeloid cells,
including monocytes/macrophages (Mf) and neutrophils (N), produce proinflammatory stimuli such as IL-1b, IL-6, TNFa and CCL2, or hormones such as PTHrP, which induce an
inflammatory response in osteoblasts (OB) and stromal cells. As a result, osteoblasts and stromal cells produce chemoattractants of myeloid cells such as CCL2, CXCL1,
CXCL5 and the inflammatory cytokines IL-6, sIL-6R and IL-1b, which further perpetuate the inflammatory state. In addition, cancer cells favor the nucleation of myeloid cells through
VCAM-1-a4b1 interactions, which form the osteoclast precursor cells (Pre-OC) that further differentiate into mature osteoclasts (OC) upon stimulation by M-CSF and the receptor
activator of NF-kB ligand (RANKL). These factors, produced by osteoblasts, stromal and other immune cells (including Tregs), signal through by interacting with their receptors
M-CSFR (CSF1R) and RANK expressed in myeloid-lineage cells, macrophages, osteoclasts and some cancer cells. Importantly, inflammatory cytokines including TNFa, IL-1 and
IL-6 induce RANKL expression in marrow stromal cells and osteoblasts and stimulate RANK expression in pre-OC cells to enhance osteoclastogenesis. Activated osteoclasts initiate
the degradation of the bone matrix, stimulated by matrix proteases such as MMPs produced by myeloid cells. In turn, bone resorption induces the release of factors that stimulate
bone remodeling, osteoblast proliferation/differentiation and tumor progression such as BMPs, IGF-1 and TGFb. Persistent inflammation also increases cell stress and tissue
damage causing apoptotic/necrotic cell death, which releases the HMGB1 and induces TNFa in neutrophils. In addition, phagocytosis of dying cells (efferocytosis) stimulates
the tumor-promoting M2-like macrophage polarization that supports further tumor growth and Th2 immune responses. Altogether, inflammation triggers an array of
interconnected molecular mechanisms with the expression of factors that mediate the infiltration and activation of myeloid cells to enable the homing, survival and colonization of
tumor cells.
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factors from the bone matrix. TGFb in turn induces the
accumulation of suppressive myeloid and Treg cells that further
produce RANKL to perpetuate a cycle that promotes tumor
growth. Given the elevated expression of RANKL and TGFb in
the bone microenvironment, this mechanism is likely to
enhance the bone-metastatic colonization by prostate and
breast cancer, two carcinomas that frequently progress into
skeletal metastasis.152 Furthermore, the activation of NF-kB
in breast cancer cells induces the expression of GM-CSF,
which promotes osteoclast formation and osteolytic bone
metastasis.168 Other findings in bone-metastatic melanoma
linked the activation of RANKL-RANK signaling with skeletal
metastasis. However, the proposed mechanism was different,
through the increased cell migration and invasion of
RANK-expressing cancer cells.169

Metastatic cancer cells secrete factors that induce pro-
inflammatory cytokines/chemokines in osteoblasts such as
IL-6, IL-8, CCL2 and CXCL5.170–172 One of the factors
expressed by cancer cells in response to different stimuli such
as TGFb is parathyroid hormone-related protein (PTHrP), which
acts in a paracrine manner to induce CCL2, IL-6 and the soluble
IL-6 receptor (sIL-6R) in osteoblasts.159,173–175 A recent study
showed that PTHrP induces IL-6 and VEGF-A in osteoblasts to
activate CD11bþ /Gr1þ myeloid cells in the bone marrow and
enhance angiogenesis, the expression of matrix remodeling
proteases and prostate cancer growth in bone.176 Furthermore,
cyclophosphamide was found to drive a temporal accumulation
of myeloid cells in the bone marrow, elevated expression of
CCL2 and increased incidence of prostate cancer skeletal
metastasis in mice.177 These studies provide evidence that
inflammation not only promotes the infiltration of myeloid cells in
the bone microenvironment but also their activation to enable
the formation of skeletal metastases.

Inflammation generates feed-forward loops in the bone
microenvironment that perpetuate the chronic inflammatory
stage. For example, a report shows that inflammatory stimuli
such as TNFa, IL1b and IL-6 induce the expression of WNT5A in
bone marrow stromal cells (BMSCs), which in turn activates
paracrine or autocrine NF-kB-mediated signaling in osteoblasts
and BMSCs to trigger the expression of proinflammatory
cytokines/chemokines including IL-1b, IL-6, CCL2, CCL5,
CXCL1 and CXCL5.178 These factors are potent chemoat-
tractants that promote tumor infiltration and activation of
inflammatory cells, which foster chronic inflammation, immuno-
suppression, angiogenesis, matrix remodeling, survival and
proliferation of tumor cells.46,66,94,140,179–184 A recent study
revealed that expression of IL-1b promotes bone-metastatic
growth in mouse models of prostate cancer, and its expression
correlates with the highest Gleason scores (47) in humans.185

Taken together, the inflammatory skeletal microenvironment
promotes metastasis through multiple mechanisms that involve
cycling interactions between tumor cells, inflammatory cells,
osteoblasts, osteoclasts and other stromal cells to result in
aberrant bone remodeling and tumor growth (Figure 2).

Conclusion

Scientific evidence supports the view that chronic inflammation
promotes tumor progression and metastasis through diverse
mechanisms that converge in the recruitment of cells from the
myeloid lineage, including macrophages and neutrophils.

Cancer cells modify the function of immune cells to skip their
attack and induce the expression of chemoattractants and
proinflammatory mediators that perpetuate inflammation to
enable metastasis. In particular, the skeleton as a target organ
for colonization integrates a complex interaction between
different cell types including cancer cells, osteoclasts,
osteoblasts, endothelial, stromal and immune cells. Experi-
mental reports suggest that populations of myeloid cells from
the primary tumor are the first invaders that condition distant
sites for the arrival of tumor cells. Once the tumor cells start
proliferating in the bone, inflammatory signals induced by
cancer cells and their interactions with neighboring cells trigger
amplification cascades that involve virtually all the components
of the microenvironment in which immune cells have a
fundamental role permitting the tumor colonization. Anti-
inflammatory therapies have been evaluated with success for
targeting tumor progression and metastasis, and they are
associated with reduced infiltration of bone marrow-derived
myeloid cells and the prometastatic macrophages.17,186–190

A different approach to target metastasis involves the direct
stimulation of antitumor immunity. For example, transformation
of macrophages from M2 to M1 type has been demonstrated to
recruit cytotoxic T cells and elicit antitumor responses.191,192

These approaches in combination with other therapies have the
potential to inhibit tumor progression and metastasis; however,
their success in human metastasis including bone remains to be
a major challenge.
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