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CXCL12/CXCR4 signaling and other recruitment
and homing pathways in fracture repair
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Cell recruitment, migration and homing to the fracture site are essential for the inflammatory process,

neovascularization, chondrogenesis, osteogenesis and ultimately bone remodeling. Mesenchymal stem cells (MSCs)

are required to navigate from local sources such as the periosteum and local bone marrow, and may also be recruited

from the circulation and distant bone marrow. While the local recruitment process may involve matrix binding and

degradation, systemic recruitment may utilize extravasation, a process used by leukocytes to exit the vasculature.

CXCL12 (stromal cell-derived factor-1 (SDF-1)), a member of the CXC family of chemokines, is thought to have an

important role in cell migration at the fracture site. However, there are many molecules upregulated in the hematoma

and callus that have chemotactic potential not only for inflammatory cells but also for endothelial cells and MSCs.

Surprisingly, there is little direct data to support their role in cell homing during bone healing. Current therapeutics for

bone regeneration utilize local or systemic stem cell transplantation. More recently, a novel strategy that involves

mobilization of large numbers of endogenous stem and progenitor cells from bone marrow into the circulation has been

shown to have positive effects on bone healing. A more complete understanding of the molecular mechanisms

underlying cell recruitment and homing subsequent to fracture will facilitate the fine-tuning of such strategies for bone.
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Overview of Fracture Repair

Bone has a remarkable capacity for repair and regeneration.
The vast majority of fractures heal by indirect (secondary)
fracture healing, a process that recapitulates some aspects of
bone morphogenesis in that it involves both intramembranous
and endochondral bone formation.1 This type of healing occurs
when there is motion between the bone ends and is char-
acterized by the formation of a callus. The fracture environment
immediately following injury is highly complex. Rupture of blood
vessels, activation of platelets and secretion of tissue factor by
endothelial cells result in fibrin polymerization. The resulting
hematoma, comprised of a fibrin meshwork and platelet
aggregates, provides a solid and stable structure for the initial
influx of inflammatory cells, the coagulation cascade resulting in
their subsequent activation.2,3 The hematoma, exposed bone
matrix and local periosteum are then the source of an array of
inflammatory cytokines, chemokines, growth factors, angio-
genic factors and other small molecules like prostaglandins.2,4,5

These factors are thought to be chemotactic for inflammatory
cells, endothelial cells and mesenchymal stem cells (MSCs) and

promote angiogenesis, MSC proliferation and differentiation,
and ultimately bone healing.4–6

Cell Sources for Repair

Recruitment of inflammatory cells, endothelial cells and MSCs
is essential for bone healing. Tissue-resident, circulating
and bone marrow-derived inflammatory cells are recruited.
New blood vessels arise as sprouts from existing vessels
located nearby. This process involves migration and
proliferation of existing endothelial cells and recruitment of
circulating endothelial progenitor cells, and those which reside
in the bone marrow.7,8 Recruitment of MSCs to the fracture site
is thought to occur very early in the fracture healing process
(by day 1),4 although the exact source of MSCs is debated.

MSCs likely derive from a combination of sources, including
bone marrow, periosteum, blood vessel walls, adjacent soft
tissues and peripheral blood9–12 (Figure 1). Periosteum is a rich
source of skeletal progenitor cells that can differentiate
into chondrogenic and osteogenic cell lineages13–15 and is
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considered to be the major source of skeletal progenitorcells for
fracture healing.16 Indeed, studies have demonstrated that
removal of the periosteum has a negative impact on bone
healing.17,18

The work of Alexander Friedenstein and his co-workers in the
1960s and 1970s led to the identification of a small population of
cells in the bone marrow, now referred to as MSCs, that could
adhere to tissue culture plastic and subsequently undergo
osteogenic differentiation.19 Although it is likely that these cells
migrate to the site of injury from the local bone marrow, there is
also evidence to suggest that they mobilize into peripheral
blood and subsequently home to the site of injury. In a parabiotic

mouse model, wild-type mice that were surgically linked to
donor mice expressing green fluorescent protein (GFP) in
non-erythroid tissue underwent a fibular fracture.9 GFPþ cells
were identified at the fracture site up to 3 weeks after fracture,
suggesting that fracture induced the mobilization of cells from
the bone marrow of the donor mouse into the peripheral blood
that homed to and engrafted into the fracture callus.9

Adherent fibroblast-like cells with adipogenic and osteogenic
capacity have been detected in very low numbers in the
peripheral blood,20–23 suggesting the existence of a circulating
pool of MSC-like cells. In response to tissue trauma, the
numbers of bone marrow-derived MSCs and osteogenic

Figure 1 Proposed interaction of hypoxia, CXCL12 production and cell migration at the fracture site. Evidence suggests that the transcription factor HIF-1a may drive the
upregulation of CXCL12 production in cells of damaged tissues. Low O2 levels at the fracture site (indicated by blue shading) reduce the activity of prolylhydroxylase domain protein 2
(PHD2), which would normally hydroxylate HIF-1a, leading to its binding to the von Hippel–Lindau protein (VHL) and subsequent ubiquitination and proteasomal degradation.
Instead, HIF-1a levels are stabilized, it migrates into the nucleus and heterodimerizes with HIF-1b. With transcriptional coactivators CREB-binding protein (CBP) and 300-kDa
coactivator protein (p300), HIF-1a binds to the hypoxia-responsive element (HRE) on the promoter of the CXCL12 gene. Increased CXCL12 levels at the site of injury may promote
migration of cells, including those from the periosteum (a), local bone marrow (b) and circulation (c) (see text for details). Chemokines like CXCL12 bind to glycosaminoglycans on the
surface of endothelial cells, and as a result are presented at high concentrations on the inner wall of the vessel. In this scenario, CXCL12 would engage its receptor CXCR4 on
circulating cells and convert cell surface integrins to a high-affinity state (1). ICAM-1 (intercellular adhesion molecule-1) and VCAM-1 (vascular cell adhesion molecule-1), expressed
on the endothelial cell surface, bind to integrins on circulating cells. Cells stop rolling and spread (2), and then migrate through the endothelium towards the chemokine gradient (3).
This process of chemokine-mediated cell extravasation from the vasculature has been demonstrated for leukocytes, but it is likely that other circulating cells such as MSCs and
EPCs, which express CXCR4, could undergo a similar process of transmigration. This figure was created by Chrisoula Toupadakis (University of California Davis, Davis, CA, USA).
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progenitors in peripheral blood are elevated.9,22,24–27 Likewise,
few circulating endothelial progenitor cells could be detected in
the peripheral blood under normal conditions;28,29 however, their
numbers are significantly elevated in association with vascular
injury, burns and fracture.30–36 The potential role of systemically
mobilized progenitor cells in fracture healing is unclear.

Although their exists a multiplicity of potential sources
of MSCs to contribute to fracture healing, both local and
systemically derived progenitors are thought to be attracted by
the release of potent chemokines at the fracture site and to
move down the ensuing chemical gradients.

Recruitment and Homing

Cells migrate toward the damaged tissue along chemical
gradients by a process called chemotaxis. Cells derived from
the periosteum, bone marrow and soft tissues, which exist
close to the fracture site, may simply need to navigate through
the local connective tissue, the hematoma and developing
granulation tissue, a process that involves cell matrix binding
and degradation. Cells recruited from the bloodstream likely
undergo a process similar to extravasation, a complex process
that has been well described in leukocytes3,37 (Figure 1).
Circulating leukocytes constantly survey the endothelial cell
walls by slowing down and rolling. In the presence of
inflammation, endothelial cells are stimulated to increase the
surface expression of adhesion molecules, such as selectins,
and integrin ligands, such as VCAM-1 (vascular cell adhesion
molecule-1) and ICAM-1 (intercellular adhesion molecule-1).
In addition, chemokines produced at the site of injury bind to
glycosaminoglycans on the surface of endothelial cells where
they accumulate at high concentrations.3,37 These changes
result in leukocyte binding, activation and ultimately transmi-
gration across the vessel wall. MSCs transmigrate through
tumor necrosis factor-a-activated endothelium using
mechanisms similar to those utilized by leukocytes, in addition
to novel mechanisms.38 It is suggested that while MSCs
undergo a process similar to that of leukocyte recruitment, they
might utilize a distinct set of adhesion molecules.39

The CXCL12/CXCR4 Pathway and Cell Homing

Chemokines are chemotactic cytokines responsible for the
establishment of chemical gradients for cell migration. They are
small, 8–14 kDa in size and contain four conserved cysteine
residues.40 They are further classified into four subfamilies,
CXC, CC, (X)C and CX3C, based on the position of the
N-terminal two cysteine residues.40 Chemokine receptors are
G-protein-coupled receptors, classified into the same four
subfamilies in accordance with their chemokine ligands.40

CXCL12 was first identified as a soluble ligand secreted by the
bone marrow stromal cells that stimulated the proliferation and
growth of B-cell progenitors.41 It was termed pre-B-cell growth-
stimulating factor, later to be known as stromal cell-derived
factor-1 (SDF-1).42 Both CXCR4 and CXCR7 are receptors for
CXCL12.40 Mice with disruption of CXCL12 or CXCR4 genes die
late in gestation or within an hour of birth.43–45 Mice exhibited
defects in the development of the heart and brain, impaired
B-cell lymphopoiesis and bone marrow hematopoiesis, and
impaired vascular development.43–45 Critical roles for CXCL12
and CXCR4 in many aspects of development and

organogenesis are now established. In addition, CXCL12/
CXCR4 signaling is thought to be a master regulator of stem cell
migration.

Tissue-committed CXCR4þ stem cells could be isolated
from bone marrow mononuclear cell populations by chemotaxis
towards CXCL12.46 Bone marrow-derived MSCs express
CXCR4 and migrate toward CXCL12 gradients in vitro.47

CXCL12-mediated migration of MSCs and T cells involves
activation of a number of signal-transduction pathways,
including phosphoinositide 3-kinase/Akt, extracellular signal
related kinase and p38 mitogen-activated protein kinase.48–50

A requirement for changes in intracellular Ca2þ has also been
implicated in CXCL12-stimulated migration of hematopoietic
progenitor cells.51 It is well documented that CXCL12 is
upregulated in damaged tissues, including the brain,52,53

heart,54 kidney,55 skin,56 bone57–59 and in irradiated bone
marrow.60 Some of these same studies demonstrated migration
of transplanted CXCR4þ stem cell populations to the site of
damage.53,55 Increased CXCL12 expression is considered a
key signal to promote the migration of stem and progenitor cells
to these tissues to participate in repair and regeneration.61

Hypoxia and CXCL12 Expression

Hypoxia at the site of damage, and the expression of the
transcription factor hypoxia-inducible factor-1, a-subunit
(HIF-1a), may drive the upregulation of CXCL12 in damaged
tissues and ultimately regulate the homing of CXCR4þ stem
and progenitor cells62 (Figure 1). Under normoxic conditions,
HIF-1a undergoes rapid ubiquitination and proteosomal
degradation that is dependent on the hydroxylation of proline
residues within HIF-1a by the enzyme prolylhydroxylase
domain protein 2 (PHD2).63 Under hypoxic conditions, the
activity of PHD2 is reduced and HIF-1a degradation is inhibited;
HIF-1a accumulates and binds to its consensus sequence, the
hypoxia-responsive element on HIF-1a target genes.63 HIF-1a
has been shown to induce the expression of CXCL12 under
hypoxic conditions in human endothelial cells.62 Since the
fracture site is considered hypoxic,64,65 it is possible that the
expression of chemokines such as CXCL12 is regulated by
decreased O2 availability and HIF-1a.

CXCL12 and Bone Regeneration

Evidence suggests that the CXCL12/CXCR4 pathway may have
important roles in fracture healing. CXCL12 expression was
increased 4 days after induction of a stress fracture in the rat
ulna.57 Plasma levels of CXCL12 were elevated in human
patients 2–3 days following osteotomy and application of
external fixators for limb lengthening procedures, and remained
elevated during the distraction period.58 In a murine segmental
bone graft model, CXCL12 levels were increased in live bone
graft 2 days after surgery, with high expression in the
periosteum.59 In a murine model of fracture healing, we
identified CXCL12 expression in the fracture callus in hyper-
trophic cartilage and immature cartilage close to pre-existing
cortical bone.66 Furthermore, CXCL12 staining colocalized with
staining for Hypoxyprobe (pimonidazole hydrochloride;
Hypoxyprobe, Inc., Burlington, MA, USA) a marker of hypoxic
cells.66 Almost all cells in the callus, including chondrocytes,
osteoblasts, osteoclasts and undifferentiated mesenchymal

Homing mechanisms in fracture repair
C Yellowley

BoneKEy Reports | MARCH 2013 3



tissue cells, stained positively for CXCR4.66 A similar pattern of
CXCL12 expression was demonstrated in prehypertrophic and
hypertrophic chondrocytes in a murine rib fracture callus.67

In 2008, Otsuru et al.68 identified elevated HIF-1 mRNA levels
around a bone morphogenetic protein 2 (BMP-2)/collagen
pellet implanted in the backs of mice with high expression of
CXCL12 in adjacent vascular endothelial cells. CXCL12 levels
were high in osteoblasts as new bone formed in the pellet.68

Furthermore, the migration of tail vein-injected, GFPþ marrow-
derived osteoblast progenitor cells to the pellet, where they
contributed to new bone formation, was inhibited by a CXCR4-
blocking antibody.68 Similarly, only CXCR4þ MSCs delivered
intravenously were able to home to the site of fracture in a rat
model.69 In another study, wild-type and GFPþ mice were
surgically cojoined as parabiots; transplantation of MSCs
overexpressing CXCL12 in a collagen scaffold adjacent to the
site of a murine fibular osteotomy in the wild-type mouse
increased the recruitment of GFPþ and GFPþ /alkaline
phosphatase-positive cells to the site.70 New bone formation in
a murine femoral bone graft model was inhibited by admin-
istration of anti-CXCL12-neutralizing antibody, chemical
inhibition of the CXCR4/CXCL12 axis and in mice with
genetically reduced CXCL12 and CXCR4 expression.59 In our
murine fracture model, administration of a CXCR4 antagonist,
AMD3100, two times daily over the course of healing resulted in
significantly reduced callus cartilage volume after 14 days,
callus volume and mineralized bone volume at day 42 and
reduced expression of genes associated with endochondral
bone formation.66 Taken together, these studies suggest that
CXCL12/CXCR4 signaling does have a central role in bone
healing by regulating the recruitment of stem and progenitor
cells. Furthermore, it is likely that the hypoxic nature of the
fracture site65 and hypoxia in developing tissues such as
cartilage71 contribute to CXCL12 expression.

Recent studies suggest that CXCL12 administration to the
site of bone damage may have potential therapeutic benefits.
In a murine fracture model, a single injection of CXCL12
immediately after fracture elevated the expression of genes
associated with endochondral ossification and induced
changes in callus histology, which suggests accelerated
healing.72 In a murine model of high-speed distraction
osteogenesis, where the bone fragments are distracted faster
than normal, resulting in impaired callus formation, local
injection of CXCL12 every other day rescued callus formation,
increased the number of resident bone marrow endothelial and
endothelial progenitor cells, and improved vascularization.73

It is of note that CXCL12 has also been shown to induce the
chemotactic recruitment of human osteoclast precursors,
promote their differentiation into osteoclasts and regulate their
activity and survival.74,75 Osteoclast activity is essential for
remodeling of woven bone in the hard callus,76 although the
interplay of CXCL12 and osteoclasts in the fracture environment
has yet to be explored.

Role of CXCL12 in Bone and Cartilage Development

Several studies suggest a pivotal role for CXCL12 signaling in
bone development, a process that is recapitulated in many
aspects during fracture healing. In a study of developing mouse
bones, CXCL12 was expressed in prehypertrophic and
hypertrophic chondrocytes of the growth plate.67 Compared

with wild-type embryonic mice, SDF� /� mice had significantly
shorter humeri and smaller hypertrophic and calcification zones
in the growth plate.67 In contrast, another study reported
low-level expression of CXCL12 in the growth plate and high
expression of CXCL12 in bone marrow adjacent to the
hypertrophic zone of the growth plate.77 However, CXCR4 was
strongly expressed in the hypertrophic zone and CXCL12
treatment stimulated chondrocyte hypertrophy.77 In another
study, CXCL12 was expressed at the site of the future peri-
osteum early in development (E14) with increased expression in
endosteal osteoblasts and chondrocytes in the hypertrophic
zone at E18.78 At birth, CXCL12 expression decreased
on the periosteal surface but increased on endosteal
marrow surfaces.78 CXCL12 has been shown to regulate
BMP-2-stimulated osteogenic differentiation79 and CXCR4
regulates osteoblast development in postnatal bone.80 As such,
CXCL12 signaling may have roles in fracture healing that extend
beyond cell recruitment, including direct effects on MSC
proliferation, and differentiation into cells of the chondrogenic
and osteogenic lineages.

Manipulation of CXCL12/CXCR4 Interactions in the Bone
Marrow to Mobilize Stem and Progenitor Cell Populations

It is well recognized that CXCL12 production by endosteal
osteoblasts, endothelial cells and reticular cells is critical
for retention of HSCs in the bone marrow60,81,82 (Figure 2a).
Low O2 levels at the endosteal surface are thought to potentiate
CXCL12 production by these bone marrow niche cells.83 Tissue
damage, in particular ischemic tissue damage including
fracture, results in mobilization of stem and progenitor cells
from their bone marrow niche into the peripheral blood.9,31,32,34

For example, hindlimb ischemia induced mobilization of murine
bone marrow derived c-kitþ stem cells into the peripheral blood
at 6 h.84 At this same time point, CXCL12 levels were increased
in ischemic muscle, significantly increased in the plasma and
significantly downregulated in the bone marrow.84 It is likely that
ischemic tissue damage results in increased CXCL12 levels at
the fracture site driven by decreased O2 (Figure 2b). Increased
levels of CXCL12 at the fracture site coupled with increased
plasma CXCL12 levels, and potentially decreased bone marrow
levels, could create a CXCL12 chemotactic gradient that results
in stem and progenitor cell mobilization into peripheral blood
and homing to the fracture site (Figure 2b). Although there is
evidence for fracture-induced stem cell mobilization,9,26,31,32,36

increased CXCL12 after stress fracture site57 and in plasma
following osteotomy,58 the effects of fracture on bone marrow
levels of CXCL12 are as yet unknown.

CXCR4 antagonists such as AMD3100 rapidly mobilize
hematopoietic progenitor cells into the peripheral blood in both
humans and mice,85 as a result of disruption to CXCL12/CXCR4
interactions in the bone marrow (Figure 2c). Interestingly, there
is also evidence to suggest that AMD3100 induces mobilization
of endothelial progenitor cells and MSCs into the peripheral
blood.86–88 The ability of molecules such as AMD3100
to mobilize large numbers of stem and progenitor cells into the
peripheral blood has been utilized in a radical new approach to
enhance bone healing. It is proposed that these mobilized cells
will home to the site of injury to participate in bone regeneration.
For example, 15 daily injections of AMD3100 significantly
enhanced murine calvarial defect healing at 8 weeks with
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increased neovascularization of regenerating tissue observed a
early as 1 week.89 AMD3100, administered one time after
murine bone marrow ablation surgery, significantly enhanced
intramedullary trabecular bone regeneration 3 weeks later.87

AMD3100 improved healing of a murine tibial defect after

8 weeks, but only when administered in combination with
insulin-like growth factor-1.90 In our own studies of murine
femoral fracture healing, mice injected for 3 days following injury
with AMD3100 had a significantly greater total callus volume at
day 21 after surgery compared with mice injected with saline

Figure 2 CXCL12/CXCR4 interactions in the bone marrow. (a) CXCL12 production by endosteal osteoblasts (shown), endothelial cells and reticular cells (not shown) is critical
for the retention of CXCR4þ stem and progenitor cells in the bone marrow. Low O2 levels at the endosteal wall, which is at a distance from marrow sinusoids, are thought to drive
CXCL12 production in these cells. (b) High levels of CXCL12 produced at the site of bone damage may result in the establishment of a chemotactic gradient between the fracture,
blood plasma and bone marrow. It is possible that CXCL12 production at the fracture site is driven by low O2 levels. CXCR4þ stem and progenitor cells are mobilized from the bone
marrow into the peripheral blood and migrate down the CXCL12 chemotactic gradient. At the fracture site, cells must undergo extravasation through the vascular wall. (c) Molecules
that interfere with CXCL12/CXCR4 binding mobilize CXCR4þ cells into the peripheral blood. AMD3100, a CXCR4 antagonist, causes rapid mobilization of hematopoietic stem cells,
MSCs and endothelial progenitor cells. Pharmacological mobilization of large numbers of stem and progenitor cells into the peripheral blood may be an effective therapeutic for bone
regeneration. This figure was created by Chrisoula Toupadakis (University of California Davis, Davis, CA, USA).
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(unpublished observations). Although AMD3100-induced cell
mobilization appears to have positive effects on bone healing,
disruption of CXCL12/CXCR4 signaling is likely to disrupt cell
homing to the site of damage. While this strategy to enhance
healing is pursued, it will be important to take potential negative
effects on cell homing into consideration when considering
dosage, timing or alternate mobilization strategies.

Other Recruitment and Homing Pathways

There are a large number of potential molecules upregulated at
the fracture site during the healing cascade that are good
candidates for potentiating stem cell homing to the site of injury.
The major growth factors, cytokines and chemokines identified
at the fracture site are noted in Table 1, along with references to
their potential to induce migration of MSCs and endothelial-
type cells. Studies that either decrease or increase the
concentration of these factors during bone healing show that
they have a significant impact on the fracture healing process.
However, their potential role as chemotactic agents during
healing is largely unknown, as it is difficult to clearly separate
effects on cell recruitment from significant effects on cell
proliferation, differentiation and angiogenesis. Surprisingly,
there is sparse information regarding the expression of specific

chemokines (CXC, CC, (X)C and CX3C families) during fracture
healing, with the exception of CXCL12. Increased expression of
CCL2 (monocyte chemotactic protein-1) and CCL3 (macro-
phage inflammatory protein-1a) were described in fractured
bone from human osteoporotic patients undergoing hip
arthroplasty.91 CCL5 (regulated and normal T-cell expressed
and secreted) was detected at high levels in bone samples from
human vertebral compression fractures, although the normal
levels in healthy controls are not known.92 While it is not clear
that CCL7 (monocyte chemotactic protein-3) levels have been
detected at the site of bone injury, CCL7 has been used to
enhance homing of osteogenic cells to the fracture site.70

Experiments that utilize the parabiotic mouse model or inject
labeled stem cells have the potential to give the most direct
evidence regarding the roles of specific molecules in stem cell
homing. While these studies are few and far between, most
have focused on a role for CXCL12 in cell homing as described
above.68–70

Summary

Recruitment of endogenous stem and progenitor cells is
essential for bone healing. There are likely many chemotactic
signals that initiate the migration of these cells from both local

Table 1 Potential chemotactic signaling molecules identified at the site of fracture, stress fracture or vertebral compression fracture were derived from the following

reviews and articles5,57,92–94

MSC (stromal)/migration Endothelial cell/EPC migration

Growth factors/morphogens
TGF-b Human BM-MSCs95 Human cerebral microvascular endothelial cells96

PDGF Human BM-MSC;47,97–99 rabbit BM-MSCs;99 human
adipose MSCs100

Rat BM-EPCs;101 human cerebral microvascular
endothelial cells96

FGF Rabbit MSC;99 human BM-MSCs;102 human adipose
MSCs100

Rat BM-EPCs;101 human cerebral microvascular
endothelial cells96

IGF Human BM-MSCs;47,103 rabbit BM-MSCs;99human
adipose MSCs100

Human endothelial cell (ECV304)104

GDF-5 — Bovine aortic endothelial cells105

VEGF Human BM-MSCs98,106 HUVEC;107 human microvascular endothelial cells;108

human cerebral microvascular endothelial cells96

Angiopoietin 1 — HUVEC;107,109 EPCs109

Angiopoietin 2 — EPCs109

BMP-2 Human BM-MSCs110 Human microvascular endothelial cells;108 HUVEC111

BMP-4 Human BM-MSCs98,110 Human microvascular endothelial cells112

BMP-6 — Murine intraembryonic endothelial cells113

BMP-7 Human BM-MSCs98,114 —

Chemokines
CXCL12 (SDF-1) Human BM-MSCs;47,115,116 human adipose MSCs;100

human periosteal progenitor cells117
Human retinal endothelial cells;118 HUVEC;119 human
peripheral blood EPCs120

CCL2 (MCP-1) Rat BM-MSC;121 human adipose-MSCs;100 human BM-
MSCs;116 human periosteal progenitor cells117

HUVEC122,123

CCL3 (MIP1a) Human BM-MSCs115,116 —
CCL5 (RANTES) Human BM-MSCs47,116 Murine BM-EPCs124

CCL7 (MCP-3) Rat BM-MSCs125 Human circulating angiogenic cells126

Cytokines
IL-1 Human BM-MSCs127 Human peripheral blood-EPCs128

IL-6 Human BM-MSCs102,129 Human cerebral endothelial cells130

TNF-a Human adipose MSCs;100 human BM-MSCs;131 human
muscle-derived stem cells132

Bovine pulmonary artery endothelial cells133

Abbreviations: BM, bone marrow; BMP, bone morphogenetic protein; CCL, CC chemokine ligand; CXCL, CXC chemokine ligand; EPC, endothelial progenitor cell;
FGF, fibroblast growth factor; GDF, growth/differentiation factor; HUVEC, human umbilical vein endothelial cell; IGF, insulin-like growth factor; IL, interleukin;
MCP, monocyte chemotactic protein; MIP, macrophage inflammatory protein; MSC, mesenchymal stem (stromal) cell; PDGF, platelet-derived growth factor; RANTES,
regulated and normal T-cell expressed and secreted; SDF, stromal cell-derived factor; TGF, tumor growth factor; TNF, tumor necrosis factor; VEGF, vascular endothelial
growth factor. Increased expression of CCL2 and CCL3 was described in fractured bone from human osteoporotic patients undergoing hip arthroplasty.91 CCL7 has
been used to enhance homing of osteogenic cells to the fracture site.70 In addition, many of these factors have clear and critical roles in the recruitment of mature cells of
hematopoietic origin and hematopoietic stem and progenitor cells (including osteoclast and their precursors) that coordinate the inflammatory response at the fracture
site. This literature is not reported here.
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and systemic sources. While data suggest that CXCL12
upregulation at the site of damage may have a significant role in
recruitment, very little is known regarding other candidate
molecules. Transplantation of large numbers of stem and
progenitor cells to augment the natural healing process holds
significant promise for musculoskeletal regenerative medicine,
especially in circumstances where healing is impaired. Cells are
commonly transplanted locally with or without scaffolds,
or systemically into the peripheral blood. Targeting chemotactic
pathways to maximize both endogenous and/or transplanted
cell recruitment could be a highly effective strategy to promote
healing in slow or non-healing fractures and bone defects.

While systemic recruitment of stem and progenitor cells is
controversial, data support the idea that both endothelial cells
and cells with osteogenic potential are increased in the
peripheral blood following fracture. The exact nature of these
cells, how and when they are mobilized subsequent to bone
damage, recruitment mechanisms and what role they might
play in bone regeneration warrants further investigation.
Strategies to enhance mobilization of endogenous cell
populations, and increase circulating stem and progenitor cell
number, appear to have positive effects on bone healing.
However, a more complete understanding of the molecular
mechanisms underlying mobilization and homing in response to
fracture is required to develop the most effective therapeutics.
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