BoneKEy Reports | Reviews

Role of mathematical modeling in bone fracture healing

Peter Pivonka
Colin R Dunstan



Bone fracture healing is a complex physiological process commonly described by a four-phase model consisting of an inflammatory phase, two repair phases with soft callus formation followed by hard callus formation, and a remodeling phase, or more recently by an anabolic/catabolic model. Data from humans and animal models have demonstrated crucial environmental conditions for optimal fracture healing, including the mechanical environment, blood supply and availability of mesenchymal stem cells. Fracture healing spans multiple length and time scales, making it difficult to know precisely which factors and/or phases to manipulate in order to obtain optimal fracture-repair outcomes. Deformations resulting from physiological loading or fracture fixation at the organ scale are sensed at the cellular scale by cells inside the fracture callus. These deformations together with autocrine and paracrine signals determine cellular differentiation, proliferation and migration. The local repair activities lead to new bone formation and stabilization of the fracture. Although experimental data are available at different spatial and temporal scales, it is not clear how these data can be linked to provide a holistic view of fracture healing. Mathematical modeling is a powerful tool to quantify conceptual models and to establish the missing links between experimental data obtained at different scales. The objective of this review is to introduce mathematical modeling to readers who are not familiar with this methodology and to demonstrate that once validated, such models can be used for hypothesis testing and to assist in clinical treatment as will be shown for the example of atrophic nonunions.

Creative Commons License This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 United States License.