A Double-Blind Comparison of Escitalopram and Paroxetine in the Long-Term Treatment of Generalized Anxiety Disorder

ROBERT J. BIELSKI, MD
Summit Research Network, Okemos, MI USA

ANJANA BOSE, PhD, and CHUNG-CHI CHANG, PhD
Forest Laboratories, Inc., New York, NY USA

Background. This study compared the efficacy and tolerability of escitalopram, a newer SSRI, with paroxetine in the treatment of generalized anxiety disorder (GAD).

Methods. Patients with DSM-IV-defined GAD were randomized to receive 24 weeks of double-blind flexible-dose treatment with either escitalopram (10–20 mg/day) or paroxetine (20–50 mg/day), followed by a 2-week, double-blind, down-titration period. Mean change from baseline to endpoint (LOCF) in Hamilton Anxiety Scale (HAMA) scores was the primary efficacy variable.

Results. Mean baseline HAMA scores for the escitalopram (N=60) and paroxetine (N=61) groups were 23.7 and 23.4, respectively. After 24 weeks of treatment, mean changes in HAMA scores were −15.3 and −13.3 for escitalopram and paroxetine, respectively (p=0.13). Significantly fewer patients withdrew from escitalopram than paroxetine treatment due to adverse events (6.6% vs. 22.6%; p=0.02). The frequency of treatment-emergent adverse events was higher with paroxetine vs. escitalopram: overall (88.7% vs. 77.0%), insomnia (25.8% vs. 14.8%), constipation (14.5% vs. 1.6%), ejaculation disorder (30.0% vs. 14.8%), anorgasmia (26.2% vs. 5.9%), and decreased libido (22.6% vs. 4.9%). Conversely, diarrhea and upper respiratory tract infection were reported more with escitalopram than paroxetine (21.3% vs. 8.1%, and 14.8% vs. 4.8%, respectively).

Conclusions. These results support the use of escitalopram as a first-line treatment for GAD.

Keywords Escitalopram, paroxetine, generalized anxiety disorder, clinical trial, treatment, SSRIs

INTRODUCTION

Generalized anxiety disorder (GAD) is a highly prevalent and disabling disorder. Patients with GAD often suffer symptoms such as excessive anxiety and worry throughout adult life. The diagnosis of GAD requires that the anxiety and worry (or concomitant physical symptoms) interfere functionally with the patient’s life. Some patients view their predilection for worrying as an aspect of their nature, rather than as symptoms of a treatable disorder (1).

Address correspondence to Robert J. Bielski, MD, Summit Research Network, 4084 Okemos Road, Suite C, Okemos, MI 48864 USA. E-mail: rbielski@summitnetwork.com

The selective serotonin reuptake inhibitors (SSRIs), a class that includes escitalopram and paroxetine, are commonly used to treat GAD (1). However, there is a paucity of double-blind, head-to-head comparisons of these compounds to guide selection of a specific agent. Furthermore, to our knowledge, no head-to-head comparison trial of any two antidepressants (of any class) of long-term duration (i.e., at least 24 weeks) in GAD patients has been published. Such data should be relevant for clinicians, since pharmacotherapy for GAD is usually continued beyond acute treatment (1–2).

Escitalopram is the most selective SSRI available (3). Preclinical studies (4–6) have demonstrated that escitalopram has a broad spectrum of anxiolytic activity. Also, three randomized, double-blind, placebo-controlled trials each demonstrated...
that escitalopram at doses of 10 to 20 mg/day is effective and well tolerated in the treatment of GAD (7), with mean reductions in Hamilton Anxiety Scale (HAMA) scores of up to 3.9 points greater than placebo treatment (8). An open-label extension study in GAD patients supports the long-term tolerability and effectiveness of escitalopram at these doses (9).

Paroxetine is also well established as an anxiolytic agent, with several positive published trials of paroxetine in the treatment of GAD (10–12). Paroxetine’s broad anxiolytic properties have also been demonstrated in animal models (13–15). The dose range of paroxetine 20–50 mg/day was studied in one 8-week flexible dose trial; in this trial, paroxetine decreased mean HAMA scores by approximately 2 points more than placebo treatment (10). One long-term trial in GAD demonstrated that patients treated with paroxetine (20–50 mg/day) were less likely to relapse than placebo-treated patients (12).

The present trial compared 24 weeks of double-blind treatment with escitalopram or paroxetine in moderately to severely ill GAD patients.

METHODS

This randomized, double-blind, flexible dose trial, consisting of a one-week single-blind placebo lead-in period, followed by a 24-week double-blind treatment period, and a 2-week double-blind down-titration period, was conducted at 8 sites in the United States.

Subjects

Male or female outpatients (18–65 years) who met DSM-IV criteria for GAD (as determined at screening by the Mini-International Neuropsychiatric Interview) were eligible for participation in this trial if at both screening and baseline their HAMA (16) score was 18 or higher, their Hamilton Depression Rating Scale (HAMD) (17) score was 17 or lower, and their Covi Anxiety Scale (18–19) score was greater than their Raskin Depression Scale (20) score.

Patients were excluded if they met the essential DSM-IV criteria for any Axis I disorder other than GAD, or had a history of any DSM-IV-defined psychotic disorders. Patients with any psychotic features, personality disorders, substance abuse or dependency (defined by DSM-IV criteria), or who posed a suicide risk, were also excluded. Women of child-bearing potential were allowed to participate if practicing a reliable method of contraception, and women were excluded if pregnant or breast feeding.

The study protocol was approved by the institutional review boards for all participating study centers, and all subjects provided written informed consent.

Study Flow

Patients who met eligibility criteria at both the screening and baseline visits were randomly assigned to 24 weeks of double-blind treatment with escitalopram or paroxetine. Patients randomly assigned to escitalopram received 10 mg/day for the first 4 weeks of double-blind treatment, after which the dose could be increased to 20 mg/day. Patients randomly assigned to paroxetine received 20 mg/day for the first 2 weeks of double-blind treatment; subsequently the dose could be increased every 14 days by 10 mg/day, until a maximum allowed dose of 50 mg/day by Week 8. Throughout the 24-week double-blind period, dosage could be decreased at any time to improve tolerability (or due to adverse events). The minimum allowed doses were escitalopram 10 mg/day and paroxetine 20 mg/day.

At the end of 24 weeks, patients began a 2-week double-blind down-titration period, during which the doses of escitalopram and paroxetine were decreased in 10 mg/day decrements until a final dose of 10 mg/day was reached. For example, patients receiving escitalopram 20 mg/day at the end of week 24 were down titrated to receive 10 mg/day for the 2-week down-titration period; patients receiving escitalopram 10 mg/day at the end of 24 weeks were maintained at that dose. Similarly, patients receiving paroxetine 20 mg/day at the end of 24 weeks had their dose reduced to 10 mg/day for the 2-week down-titration period. Patients receiving doses of paroxetine higher than 20 mg/day had their doses stepped-down in 10 mg/day decrements at regular intervals until the final dose of 10 mg/day was reached. For example, patients receiving paroxetine 50 mg/day at the end of the 24-week study received 40 mg/day on days 1–3, 30 mg/day on days 4–6, 20 mg/day on days 7–10, and finally, 10 mg/day on days 11–14 of the down-titration period. Patients discontinuing prematurely also could be down-titrated, if judged to be appropriate by the investigator.

The active treatments were provided as identically appearing tablets, and matching placebo tablets were used in the escitalopram arm to maintain blinding both during the 24 weeks of treatment and the 2-week down-titration period.

Study visits were conducted at screening and baseline, and after 1, 2, 4, 6, 8, 12, 16, 20, and 24 weeks of double-blind treatment. The baseline visit occurred at the end of the placebo lead-in. All Week 24 evaluations were performed upon early termination. Safety assessments were conducted at all visits, and included monitoring of vital signs and recording of adverse events. Patients were not queried about specific adverse events. Additionally, safety assessments were conducted at Week 26, following the 2-week down-titration period. Complete efficacy evaluations were performed at baseline and after 8 and 24 weeks of double-blind treatment: HAMA, Clinical Global Impressions (21) of Improvement and Severity Scales (CGI-I and CGI-S; CGI-I was not conducted at baseline), and the short form of the Quality of Life (QOL) scale (22). Additionally, the HAMA was conducted at every study visit through Week 24.
Statistical Analysis

The primary efficacy endpoint was change from baseline to Week 24 in HAMA total score for the intent-to-treat (ITT) population using the last-observation-carried-forward (LOCF) analysis. Comparisons between escitalopram and paroxetine were performed using an analysis of covariance (ANCOVA) model with treatment group and center as factors and baseline score as covariate. For CGI-I scores, an analysis of variance (ANOVA) model was used, with treatment and center as factors. Response rates were analyzed using logistic regression with treatment group and baseline scores as explanatory values.

All statistical tests were two-sided with a 5% significance level. All efficacy analyses were based on the ITT population (those who had received at least one dose of double-blind study medication and had at least one post-baseline HAMA assessment). All patients who received at least one dose of double-blind study medication were included in the safety analyses. All efficacy results presented are based on the LOCF analysis.

RESULTS

One hundred and twenty-three patients received at least one dose of double-blind treatment, 61 with escitalopram, and 62 with paroxetine. Of these, 60 escitalopram- and 61 paroxetine-treated patients also had at least one post-baseline HAMA assessment, and comprised the ITT population. There were no statistically or clinically significant differences in baseline demographic characteristics (Table 1). The average age at baseline was approximately 37, and the majority of patients were Caucasian and female. Baseline efficacy values indicate a patient population suffering from moderate to severe GAD, with patients reporting low quality of life. Mean duration of GAD was 11 and 10 years for the escitalopram and paroxetine groups, respectively.

A total of 64% of escitalopram-treated patients and 53% of paroxetine-treated patients completed all 24 weeks of double-blind treatment. With the exception of adverse events (see below), there were no statistically significant differences in reasons for premature discontinuation between the two treatment groups. The most common reasons for withdrawal overall were adverse events (15%), lost to follow-up (11%), and withdrawal of consent (7%). The mean daily doses were escitalopram 14.4 mg/day and paroxetine 29.9 mg/day.

Both drugs led to improvements over time in all efficacy measures. Week 8 and Week 24 analyses of efficacy data indicated no statistically significant differences between treatment groups (Table 2). For the escitalopram and paroxetine treatment groups, the proportion of patients who met the response criterion (defined as CGI-I of 1 or 2) at Week 8 was 65.0% and 55.7%, respectively, and 78.3% and 62.3%, respectively, at Week 24 (Table 2); these differences also were not statistically significant.

Statistically significantly more patients withdrew prematurely due to adverse events from the paroxetine group than the escitalopram group (22.6% vs. 6.6%; p = 0.02, Fisher exact test). No adverse event was reported as a reason for discontinuation from escitalopram treatment by more than one patient; for paroxetine, headache, insomnia, and nausea each led to the discontinuation of two or more patients. The incidence of treatment emergent adverse events overall was 88.7% for paroxetine and 77.0% for escitalopram. Of note, sexual adverse events (ejaculation disorder, anorgasmia, and decreased libido), constipation, and insomnia were more frequent in paroxetine-treated patients than in escitalopram-treated patients. Conversely, diarrhea and upper respiratory tract infection were more likely to be reported by escitalopram- than paroxetine-treated patients (Table 3).

Mean weight at baseline was 168.7 ± 37.1 lbs for the escitalopram group and 167.9 ± 39.5 lbs for the paroxetine group. For patients completing 24 weeks of double-blind treatment,
the incidence of the majority of the most frequent adverse events
was lower for the escitalopram group than for the paroxetine group.

Secondly, there were significantly fewer premature discontinuations
due to adverse events in the escitalopram group than in the paroxetine group. Secondly,
there were fewer reports of treatment-emergent adverse events for the escitalopram
group than for the paroxetine group. Finally, the incidence of the majority of the most frequent adverse
events were lower for the escitalopram group than for the paroxetine group. This was especially the case for sexual adverse events
(ejaculation disorder, anorgasmia, and decreased libido),
insomnia, and constipation, where the rates observed in this trial
for these events were consistent with previously reported values
associated with these agents (23–26). In contrast, reports of diar-
raea and upper respiratory tract infection were notably more fre-
quently for the escitalopram group than for the paroxetine group.

Weight gain and discontinuation syndromes have been associated
with the use of certain SSRIs (27–32), and so it was
of interest to compare the incidence of weight gain during
double-blind treatment, and the emergence of adverse events
during the down-titration period for the two drugs. Symptoms
consistent with a discontinuation syndrome, such as dizziness
and paresthesia (31), were observed during the down-titration
period for several paroxetine treated patients despite the dose
taper-down design. Discontinuation symptoms were not noted
for any escitalopram treated patients during the down-titration
phase, though it should be noted that escitalopram was not
down-titrated from 10 mg/day during this period.

Regarding weight gain, the mean increase (5.5 lbs) for the
paroxetine treated group was somewhat greater than what had
been reported in an earlier placebo-controlled trial of paroxetine
in the long-term treatment of GAD, in which mean weight
gain among paroxetine treated patients was 2.9 lbs (12). There
are some differences in the design of these studies that might
account for the differential outcomes with respect to weight
gain. For example, the placebo-controlled trial evaluated the
efficacy of paroxetine in preventing relapse among patients
who had responded to 8 weeks of single-blind treatment with
the drug. Thus patients who entered the long-term phase of the
trial presumably were able to tolerate paroxetine during the 8-
week single-blind treatment phase. Second, during the placebo-
controlled phase of that trial, the paroxetine dose was fixed at
the dose that was being received at the end of the single-blind
phase, whereas in the present trial, patients receiving less than
50 mg/day paroxetine could be up-titrated further in the event
of insufficient therapeutic response. It is of note that the relative
frequency of clinically significant weight gain (i.e., an increase
over baseline weight of 7% or greater) was lower for the escital-
opram group than for the paroxetine group (8% vs. 18%).

In this trial, escitalopram treatment was shown to be at least
as effective as paroxetine on most outcome measures. Two
aspects of this trial limit the interpretation of the efficacy
results: the lack of a placebo treatment arm, and the small
group sizes; this study was not designed to establish the statisti-
cal superiority of one of the active treatment groups relative
to the other. Even though no placebo treatment arm was
included, the magnitude of the improvement in HAMA scores
for both treatment groups was consistent with those reported
from placebo-controlled trials (7–8, 10–11).

For conditions such as GAD, which require long-term
 treatment, prescribing choices need to take into account both acute
effects on efficacy and tolerability, as well as outcomes from
continuation treatment. In this trial, escitalopram treatment was
better tolerated and at least as effective as paroxetine treatment,
and should be considered a first-line option by clinicians for
the treatment of GAD.
ACKNOWLEDGMENTS

This study was supported by funding from Forest Laboratories, Inc.

REFERENCES

14. Duxon MS, Starr KR, Upton N: Latency to paroxetine-induced anxiolysis in the rat is reduced by co-administration of the 5-HT(1A) receptor antagonist WAY106035. Br J Pharmacol 2000; 130:1713–1719