
Introducing the BASIC Programming
Language in a General Course
on Computers in Pharmacy:
An Approach and Examples

William E. Fassett
Dale B. Christensen

INTRODUCTION

Should programming be taught to pharmacy students as part of an
introductory course in computers in pharmacy? Robert Barger sug-
gests that computer literacy includes both computer awareness (an
understanding of computer function, structure, terminology, and
the impact of computers on one's life and profession) and the ability
to do computing, which requires a fundamental understanding of
programming concepts as well as minimal skill in at least BASIC
programming (1). Speedie published the earliest description of a
computer applications course in a pharmacy school in 1980; he did
not include programming proficiency in the course objectives (2).
The most recent summary of pharmacy computer courses, however,
revealed that the majority of courses (16 out of 27, or 59.3%) in-
cluded programming (3).

We believe that some familiarity with programming concepts is
essential to computer literacy and have included a programming
experience as part of our survey course, Computer Applications in
Pharmacy. Our goal is not to produce programming competency but

William E. Fassett, M.B.A., is Assistant Professor and Dale B. Christensen,
Ph.D., is Associate Professor in the Department of Pharmacy Practice SC-69,
School of Pharmacy, University of Washington, Seattle, WA 98195.

Journal of Pharmacy Teaching, Vol. l(1) 1990
O 1990 by The Haworth Press, Inc. All rights reserved. 41

42 JOURNAL OF P H A M C Y TEACHING

to show students that programming a personal computer is within
their grasp. Students gain experience in analyzing a problem and
developing a step-by-step solution. They also learn to describe the
solution precisely, in a formal grammar. We believe these objec-
tives can be met not only by exposure to programming concepts
using a general purpose language, such as BASIC, but also by in-
troduction to specialized application languages, such as spread-
sheets and data base managers. Herein we present three instruc-
tional examples for use by. others in a similar educational setting.

THE PROGRAMMING COMPONENT

Minimal Lecturing Combined with Self-Study

Our approach involves a minimum set of lectures on general ap-
proaches to programming, using BASIC as the example language.
In a 30-lecture course, 3 class sessions are devoted to program-
ming, and students are asked to work in groups to produce a small
program related in some way to pharmacy practice. To aid the com-
pletion of the assignment, three suggested programs are outlined,
and students may choose one of them or create one of their own.

Approach to Teaching Programming Concepts

We use the input-processing-output (IPO) model as the suggested
structure for introductory level student programs (4). For each of
the suggested programs, input and output requirements are given,
and a short discussion of a processing approach is included. Finally,
an abbreviated list of BASIC commands that are essential to com-
pletion of the specific example program is provided to the student.
Thus the student can concentrate on learning only the syntax essen-
tial to the program he or she has chosen. Admittedly, the students
do not learn sufficient grammar to become proficient BASIC pro-
grammers, but they have the experience of developing a successful
BASIC program.

As an alternative to programming in BASIC, interested students
can choose to complete their programming projects using spread-
sheets (e.g., Lotus 1-2-3 or Excel), data base managers (e.g.,

William E. Fassett and Dale B. Christensen 43

dBASE 111 or R:Base), or other high-level programming languages
(including Turbo Pascal, Turbo C, or Turbo Prolog). Typically, in a
class of 40 students, 1 or 2 groups use spreadsheets, 1 or 2 students
work individually using another high-level language, and the ma-
jority work with BASIC.

Three Sample Programs

The three programs we have used were developed as examples of
program fragments that might be found in larger pharmacy com-
puter systems. They also provide a range of contexts suitable to the
varied academic preparation of our students (our course is open to
students in all three years of our program). Each example is briefly
discussed below, and the Appendix contains the complete handout
provided to our students.

PRICE.BAS is a program that calculates the retail price of a pre-
scription, given the acquisition cost and the quantity dispensed.
Students must implement a prescribed pricing schedule, which in-
cludes a minimum retail price, a sliding professional fee, and a
fixed percentage markup for acquisition costs greater than $20.
More than anything else, this program teaches students how to im-
plement conditional tests. It also provides experience in formatting
numeric output, since the output requirements include expressing
results in standard dollars-and-cents notation.

The second example program, DEATEST.BAS, attempts to vali-
date a given DEA registration number using the check digit method
published by the Drug Enforcement Administration. The student is
asked to accept the registrant's last name and DEA number as input,
then determine whether the number is internally consistent. This
program stresses conversion between text and numeric data types
and requires string manipulation. Students also learn to test for
ASCII code values and to convert between lowercase and uppercase
text. Of the three examples, this one requires the least amount of
background knowledge of pharmacy practice but may require the
most advanced programming techniques.

The final example program simulates a single infusion dose of a
drug in a one-compartment kinetic model. Students are asked to
create a program that allows input of the desired dose, the length of

44 JOURNAL OF P K 4 M f f TEACHING

infusion, the desired sampling interval, the length of the simulation,
and the parameters for clearance and volume of distribution. The
output required is a list of plasma concentrations at each of the
sampling intervals. This simulation requires the student to deter-
mine whether a given sampling time is pre- or post-infusion and to
apply the appropriate formula. It provides an introduction to the
mathematical commands in BASIC, as well as numeric formatting.
It also demonstrates the use of loops and/or arrays.

Implementation in the Course

The programming exercise is integrated into the course during
the last half of the term. Two chapters in the textbook are assigned;
the first covers programming concepts, and the second reviews pro-
gramming languages (5). Three lectures are provided. The first lec-
ture discusses the programming cycle and the IPO model of pro-
gram structure. The second and third lectures cover the rudiments
of BASIC programming using as an example the creation of a pro-
gram to convert pounds to kilograms. Students are supplied with a
handout entitled "Entering a BASIC Program" that takes them
through a simple example whereby they enter a program, save it to
a diskette, then reload the program, modify it further, and run it.
Copies of the BASIC manual for the computer system they will be
using are also made available.

1'our environment, students may use either Macintosh or MS-
DOS compatible computers running Microsoft BASIC. Microsoft
BASIC (Microsoft Corporation, Redmond, WA) was chosen as the
primary programming language for our course because it is almost
universally available on MS-DOS-based systems as well as on the
Macintosh and because it is upwardly compatible with other micro-
computer BASICS, including Quick BASIC and Turbo BASIC.

Faculty members in our department favor the use of group work,
particularly in problem-solving situations, to encourage collabora-
tive decision making. Such an approach also allows sharing of re-
sources, such as computers. For both of these reasons, students
work in groups of three or four to develop their programs and are
given about three weeks to finish the project. During this time, the
instructor is available by appointment to answer questions and to

William E. Fossett and Dale B. Christensen 45

provide help. Additional assistance is available in a microcomputer
laboratory situated near our regional health sciences library.

The programming project is one of five outside assignments that
collectively account for half of the course grade; the project is,
therefore, worth about 10% of the final grade. The finished pro-
gram is submitted to the instructor on diskette and is evaluated on
four criteria: the program runs without crashing, the input requested
and output produced meets or exceeds the requirements specified,
the processing algorithm operates correctly, and attention is given
to the user interface (i.e., displays are attractive, adequate prompts
are used, prompts and output are correctly spelled, the program
recovers from obvious user input errors). Students submit confiden-
tial evaluations of the amount of effort each group member contrib-
uted to the project, and each student's grade for the project is
weighted according to these peer evaluations.

It is common with survey courses to introduce a variety of con-
cepts that will serve the student as a framework for further learning.
It is expected that only some students will choose to pursue any
specific course inclusion in greater depth. So it is with the inclusion
of programming in a computer literacy course. We have noted else-
where that "just as real fluency in reading and writing our native
language is the mark of a literate person, fluency with computers
may include, but is not limited to, programming skills" (5). In
doing so, we noted with approbation the comments of Alan Kay:

Computer literacy is not even learning to program. That can
always be learned, in ways no more uplifting than learning
grammar instead of writing. Computer literacy is a contact
with the activity of computing deep enough to make the com-
putational equivalent of reading and writing fluent and enjoy-
able. (6)

We consider the limited exposure provided by these examples as
only one part of a combination of activities that starts students on
their way toward mastery over the computer.'

'Copies of working solutions to these examples are available to faculty mem-
bers from the authors on request.

46 JOURNAL OF PHARMACY TEACHING

REFERENCES

1. Barger RN. Computer literacy: toward a clearer definition. T.H.E. J
1983;11(2):108-12.

2. Speedie S. A computer literacy course for pharmacy students. Am J Pharm
Educ 1980;44(1):158-60.

3. Jacobs E, Christensen DB, Gibson T et al. Survey of courses relative to
computers in pharmacy practice. Presented to the Section of Teachers of Phar-
macy Administration, American Association of Colleges of Pharmacy Annual
Meeting, San Francisco, CA, 7 July 1985.

4. Shelly G. Cashman T. Introduction to computers and data processing.
Brea, CA: Anaheim Publishing Co., 1980.

5. Fassett WE, Christensen DB. Computer applications in pharmacy. Phila-
delphia: Lea & Febiger, 1986.

6. Kay A. Computer software. Sci Am 1984;251(Sept):53-59.

APPENDIX

PRICE.BAS: A progrnm to cnlculate the retail price of n prescription

w: The user should beprompted to ctiler the wholes:\le cust of tllc smck Lx,~llc, the
size of the bottle in dosage units (e.g., caps, tabs, ml), and [lie numbcr of dosage
units dispensed.

u: The program should implement the following pricing scliululc:

$0.00 - 1.99
$2.00 - 4.99
$5.00 - 9.99
$10.00 - 14.99
$15.00 - 19.99
$20.00 and over

Dispensing
fee

25% of cost

Funher. h e minimum retail price, regardless of cost, should be $3.95

Example: Cost/Ballle Pke. Size ,Rct;d PPcc

$ 2.00 100 30 $ 3.95 84.8
6.00 100 30 3.95 54.4
7.00 100 30 5.10 58.8
15.00 100 50 1 1 .SO 34.8
20.00 100 80 22.00 27.3
25.00 100 100 3 1.25 20.0

The program should display on the screen the cost for the qitnndty dispensed, h e
amount of the dispensing fee, the gross margin percentnge bnsed on sellitlg
price, and the total retail price. It should then ask thc user whetlier to calculate
another pricebor quit.

William E. Fassert and Dale B. Christensen

*: The following formulas may be useful in developing the program:

Cost per quantity dispensed = x Qty. Dispensed

Retail price = Cost per quantity dispensed +dispensing fee

Dispensing fee = Retail price - Cost per quantity dispensed

Dis ensin fee
Gross Margin % = x 100

Useful BASIC Commands,
Functions. and O~era to r~ : The program can be developed using only the commands,

functions, and operators listed below (although it may be
made more fancy using additional commands not listed):
+
+
-
I
c
<=
- -
CLS
END
GOT0
IF ... GOT0
IF ... THEN
INPUT
KEY OFF
PRINT
PRINT USING

DEA1EST.DAS: A prugronl to verily o DIM nun~bcr

-: The DEA number consists of a 9.chanctcr code ill the forni AAlilitinnnn,
where AA - uppercase chmcters and nnnnnnn = numeric digits.

i
For physicians and pharmacists, the fust letter is usually A or 6 , the second
letter is the same as the first initial of the registrant's last name (or is " T i n
some cases).

The first 6 numbers are the registmnt's actual serial numher, and the 7th
digit is a "check digit" that can be used to internally verify that the DEA
number is not invalid.

The check digit is calculated as shown by the following example:

DEA Number A64136126

Add digits 1.3, and 5 . . . 4 + 3 + 1 = 8
Add digits 2.4. and 6
and multiply the sum
b y 2 . . . (1 + 6 + 2) x 2 =

JOURNAL OF PHARMACY TEACHING

Add the two intermediate results
to produce a "checksum" . . . 26

The check digit should equal the right- T
most digit in the checksum. . . 6

Lnql?LS: The program should prompt the user to enter the DCA Nunlkr iind the
registrant's last name.

w: The progmm should advise the user whether or not the UEA Nulnbcr is
internally valid and then determine whether to prwcss :~nolher I I L I I I I I ~ C ~ or
end.

-: The program should check to see that the second letter of the DEA Number
matches the first letter of the last name. Note that if you compare an
uppercase letter with a lowercase letter, the computer will determine that they
are different.

The program should then calculate the checksum nnd compare the check digit
with the righunost digit of the checksum.

BASlC needs to know whether enhies are chmcter smngs (either characters
or numbers) or numeric values (numbers only). You will need to accept the
DEA Number from the user as a character suing so that letters and numbers
can be mired, but to calculate the checksum, you will have to parse ("peel
off") the individual digits and convert them into values.

Yseful BASIC Comma&
-and This program can be written us in^ the BASIC co~~r~n:inds.

functions, and operators listed bclow. It may be ~ntide
fancier using additional commulds that are not listcd.

ASC()
CHR$()
CLS
END
FOR ... STEP ... NEXT
GOT0
IF ... THEN
lNPUT
KEY OFF

0NECOMP.UAS: Simulation of a single infusi~m it1 a
one-cumparlment model

William E. Fassett and Dale B. Christemen 49

-: Among the earliest programs to estimate plasma concentrations of drugs
were those used to simulale the levels of a single dose of a d n ~ g whose
kinetics can bedescribed by a one-compamnent model (see text, p. 120-
121).

When a BOLUS dose is given, the disbibution phase is almost
instantaneous, so the blood levels at any point in time following the dose
can be described by the following equation that describes the elimination
process:

where Cp = plasma concenmtion
dose = bolus dose
Vd = apparent volume of dismbution
e = base of the natural logarithms (2.718282)
CI = clenmnce
'r = lime since bolus dose

The half-life of the drug can be calculated as

When an INFUSION is given, the calculations are a bit more complex
because the concentration at anv time T must account for the infusion m e
and whcther T is during or posi-infusion.

Instead of dose, the concentrations are calculated using the infusion rate
(Ko):

KO = Dosfli where Ti = length of infusion

If T is infusion, the following formula may be used:

If T is infusion, the following formula may be used:

w: The program should prompt the user for the following:

Desired dose (in mg)
Length of infusion (in hours)
Desired sampling interval (in hours) -- how often does the user want

concenaations to be displayed?
Desired leneth of the simulation (in hours) -- for how manv hours of simulated

timi shotld the program continue?
.

Desired clearance (in Uhr)
Desired volume of distribution (in UKg)

w: The program should print a list (on the screen andlor printer) of the panmeters
as entered and the calculated half-life. It should then print two columns
showing the time since the beginning of infusion andihe corresponding plasma
concentration in mcglml. At the end. the program should determine whether to . .
perform another ~ i ~ u l a t i o n or quit.

JOURNAL OF PHARU4CY TEACHING

The flowcharts (Fig. 12-1, 12-2) on pp. 276-277 of the text are for an example
program to simulate a bolus dose. They may be helpful in designing this
program.

Note: There is a typographical error on p. 274 i n the REM for linc 1 15. The
line should read:

115 REM CP = plnsma conc. VD = vol of diwib, DOSE = boh~s dose
given, CL =clearance, EXP function raises e to the power,
-((CWD)*SAMPLE-TIME)

Useful BASIC Commands.
-: This program may be created using the commands, functions,

and operators listed below. Fancier versions may utilize other
commands not listed.

<=
CLS
END
EXP()
GOT0
IF ... GOT0
IF ... TIHEN
INPU'I'
INT()
KEY OFF
LPRINT
P R I M

