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ABSTRACT
A time-accurate procedure to model fluid/structure interactions of helicopter blades is
presented. The Navier-Stokes equations in conjunction with the one-equation Spalart-
Allmaras turbulence model are used to compute the flow. Structural dynamics is modeled
using the modal equations. The aerodynamic and structural dynamic equations are
coupled time-accurately using the linear acceleration method of Newmark (direct
integration scheme). Effects of time accuracy on the computed results are investigated.
Results are compared with experimental data for a full rotor blade system.

Keywords: Rotorcraft, Aeroelasticity, Time Integration, CFD

NOMENCLATURE
[A] diagonal area matrix of the aerodynamic control points
{Cn, Cm} sectional lift and moment coefficients
{d} displacement vector
{F} generalized aerodynamics force vector
[G] damping Matrix
Hz cycles per second
[K] stiffness matrix
{L} vector of integrated sectional lift, moment and chord wise aerodynamic forces
[M] mass matrix
{q} generalized modal displacement vector
U the local speed of the blade section
[ψ] the modal matrix

1. INTRODUCTION
Aeroelasticity is one of the most challenging fields for both fixed wings and rotating blades [1].
Aeroelastic instabilities “that make or break a vehicle” are caused by strong coupling of fluid and
structural forces. Rotary blade systems are inherently flexible and dynamic, requiring time-accurate
methods to compute aeroelastic characteristics.

Accurate modeling of helicopter fluid/structure interactions requires the use of high-fidelity fluid
and structural models. Computing flows that are dominated by shock wave-boundary layer and blade-
vortex interactions requires the use of the 3-D Navier- Stokes equations [2]. The first transonic
aeroelastic computation for fixed wings obtained by time accurately coupling the Euler equations with
the modal structural equations was presented in Ref. 3. The work in Ref. 3 was based on the success of
the original method of time accurately coupling the two dimensional unsteady potential flow equations
with the structural equations, as reported in Ref. 4.

The current practice in aeroelastic computations for rotorcraft involves using precomputed
displacements from rotorcraft comprehensive methods [5] to solve the Reynolds Averaged Navier-
Stokes (RANS) equations and subsequently correcting these displacements using loads obtained from
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the RANS equations. This is an iterative process, which after the requisite number of iterations, yields
a periodic solution. Comprehensive methods use measured parameters (such as thrust and moment
forces) to compute the control angles [6] instead of using those measured in experiment. This approach
of combining comprehensive methods with the Euler or RANS flow equations is known as loose
coupling (LC) or delta-load coupling (DC) [7].

Although a formal proof of solution-convergence to a time-periodic state has not yet been obtained
for the LC/DC method, it has been applied when the flow is periodic in time as in forward flight at
constant speed [7]. However, in general the LC/DC is not applicable when the flow is transient, for
example, accelerating and decelerating rotors or maneuver [8]. In recent work some of the restrictions
of the LC/DC methods have been partially alleviated by using a time-response method, starting from
the final solution of the LC approach [9]. In order to model transient cases in a general and
comprehensive manner, time-accurate (TA) methods in which the flow equations are directly coupled
with the structural equations, are being developed. The use of timeaccurate methods for simple blades
with modal and finite-element structural models in conjunction with the Euler equations are
demonstrated in Refs. 10 & 11.

The present research is a continuation of the earlier effort to develop an analysis capability using the
Euler equations [10, 11]. Here, it is extended to the use of the RANS equations and validated with
public domain data from the HART II (the Higher harmonic control Aeroacoustic Rotor Test II) wind
tunnel test, a full rotorcraft configuration that includes deflection data [12]. The aeroelastic responses
are computed by time accurately integrating the RANS equations and modal structural equations. Only
independent windtunnel model parameters such as rotating speed, shaft angle, and control angles are
used as input.

2. APPROACH
2.1 Domain-Based Approach
The structural system is physically much stiffer than the fluid system, and the numerical matrices
associated with structures are orders-of-magnitude stiffer than those associated with fluids. In addition,
structural systems have internal discontinuities such as skin-spar-rib of a blade whereas fluid systems
have field discontinuities such as shockwaves. It is numerically inefficient to solve both systems using
a single numerical scheme (see section on Sub-Structures in [13]). Therefore, a domain decomposition
approach is used here where fluids and structures are solved in separate computational domains. 

Guruswamy and Yang [14] presented a numerical integration method, based on the Arbitrary-
Lagrange-Eulerian [15] approach, to solve this problem by independently simulating the flow using
finite-differences to solve the transonic small-perturbation equation and finite-elements to model the
structures. This method uses a finite element mesh with vertices that may be moved with the structure,
and a finite-difference flow grid that also moves with rotor blades. Grid movements are matched at
fluid/structure boundaries. The solutions were coupled only at the boundary interfaces between fluids
and structures. The coupling of solutions at boundaries can be done either explicitly or implicitly. This
domain-based approach allows one to take full advantage of state-of-the-art numerical procedures for
individual disciplines. This coupling procedure was extended to three-dimensional problems and then
incorporated into several advanced aeroelastic codes, such as XTRAN3S [16]. It was demonstrated that
the method can also be extended to model fluids with the Euler/Navier-Stokes equations on moving
grids [17, 18] for fixed-wing aircraft.

2.2 CFD Module
In this paper, the Reynolds-averaged Navier-Stokes equations [19] are numerically solved using the
Pulliam-Chaussee diagonal form of the Beam-Warming central difference algorithm [20], along with
the one-equation Spalart-Allmaras turbulence model [21] on an overset grid as implemented in the
OVERFLOW code [22]. The unsteady pressures needed for aeroelastic computations are computed
time accurately using the RANS equations. The code has a fluid/structure interfacing capability specific
for forces and deformations defined along blade axis [23].

2.3 Aeroelastic Equations of Motion
The method of solution is based on the modal form of Lagrange’s equations of motion. From modal
analysis, the displacement vector {d} can be expressed as:
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(1)

where [ψ] is the 1-D modal matrix defined along blade axis and {q} is the generalized displacement
vector. The final matrix form of the modal aeroelastic equations of motion is:

(2)

where [M], [G], and [K] are the modal mass, damping, and stiffness matrices, respectively. {F} is the
generalized aerodynamic force vector defined as

(3)

where L is the vector of integrated sectional lift values of , moments and chord wise forces at control
sections along the span, ρ is the free-stream density, and U is the local speed of the blade section. The
structural damping G is assumed to be negligible compared to aerodynamic damping. The aerodynamic
unsteady load vector {L} is computed by solving the RANS equations.

The aeroelastic equations of motion (2) are solved with a numerical integration scheme based on the
linear-acceleration method [24] which is a member of the Newmark-family of direct integration
algorithms. It assumes a linear variation in acceleration of the structure from time t to time t + ∆t. The
values of displacements, velocities and accelerations are known at time t, and the same values are
unknown at time t + ∆t. The linear acceleration assumption is adequate for the present computations,
since the time-step size required for the fluids solver is an order of magnitude smaller than that required
for the structural solver [4]. Assuming a linear variation of the acceleration, velocities and
displacements at the end of a time interval t + ∆t can be derived as follows:

(4a)

(4b)

(4c)

where

These equations can also be derived using a second-order, time-accurate central-difference scheme,
which falls into the explicit form of Newmark’s time integration method [24]. The scheme described
above is non-dissipative and does not lead to any nonphysical aeroelastic damping. To obtain physically
accurate responses, it is necessary to use the same integration time-step for both the fluid and
aeroelastic equations of motion. It is noted that the time-step size required to solve the RANS equations
is an order of magnitude smaller than that required to solve the aeroelastic equations of motion (3).
Therefore the time-step dictated by the RANS solver is also used to solve the aeroelastic equations.

The step-by-step integration procedure for obtaining the aeroelastic response is as follows: The grid
for the flow solver is obtained using a dynamic grid generation method based on assumed initial values
for the displacement {q}. Using this grid, the aerodynamic force vector {F} at time t + ∆t is computed
using the flow solver. Based on this aerodynamic vector, the new displacements at time t + ∆t are

Guru P. Guruswamy 75

Volume 5 · Number 3+4 · 2013



computed by solving Eq. 4c. This process is repeated at every step to advance the aerodynamic and
structural equations of motion forward in time until the final response is obtained.

3. RESULTS FOR FULL ROTORCRAFT CONFIGURATION
In this paper public domain experimental data for HART II wind tunnel model [12] is used for
validation. The test is a part of an international program comprising the German Aerospace Center
(DLR), the German-Dutch Wind Tunnels (DNW) foundation, the French national aerospace laboratory
National D’Etudes et de Recherches Aerospatiales (ONERA), NASA and the United States Army. The
public domain HART II helicopter model that was tested in the wind-tunnel is shown in Figure 1. A
unique feature of this test is that the data includes both measured aerodynamic forces and structural
deformations.

The blades are 2 meters long, with 0.121m chord, and consist of NACA 23012 airfoil sections. Each
blade has a built-in, -8 deg linear twist and a square tip.

In this effort, the first flapping, torsion, and lead-lag modes taken from a shake test [12] are selected
to model the structural properties. A structured grid [23] suitable for solving the RANS equations using
the SA turbulence model consisting of 27 million points, in 32 near-body grid zones and 23 million
points within 40 off-body grid zones is utilized. The surface grid and the grid near the tip are shown in
Figs. 2 and 3, respectively. More details regarding the adequacy of this grid for the HART II
configuration can be found in Ref. 23.

The base-line (BL) case, with an advance ratio µ = 0.15, shaft angle of 4 deg, and blade rotational
speed of 17 revolutions per second, was selected for the computations. At these conditions, the tip Mach
number is 0.6387. The collective, lateral-cyclic, and longitudinal-cyclic pitch angle amplitudes taken
from measurements are 3.20, -2.0, and 1.1 deg, respectively.
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Figure 1. HART II wind tunnel model.

Figure 2. Surface grid for HART-II configuration (Ref. 23).



In order to establish the adequacy of the time step, computations were performed for BL conditions
on the isolated blade of the HART II system with varying time steps. The near-body grids for the blade,
root, and tip have 1000000, 260000, and 150000 grid points, respectively. This grid is considered
representative of the full rotor system since the same grid topology is repeated for all four blades.
Computationally it is substantially less expensive to establish the time-step required to obtain time-
accuracy by using the isolated blade.

The blade was rotated in integral multiples of 1200 steps per revolution (NSPR) starting at 1200.
Figures 4 and 5 show plots of Cn and Cm with respect to azimuth, respectively. Cn converges around
NSPR = 4800. The values for Cm are small since it is measured at the elastic axis very close to quarter
chord, its convergence is slightly slower than that obtained for Cn. However the results are very close
between NSPR = 6000 and 7200. All subsequent computations were performed with NSPR = 6000.
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Figure 3. Grid details near the blade tip (Ref. 23).

Figure 4. Effect of time step on Cn for baseline case.

Figure 5. Effect of time step on Cm for baseline case.



Time accurate computations for the full rotorcraft configuration were found to require about five
revolutions for the responses to converge. Figure 6 shows the response of the tip twist angle for 6
revolutions. Responses converge between the 4th and 5th revolutions. The results presented hereafter
are from the 5th revolution.

Figure 7 shows a plot of the sum of the aeroelastic responses of the tip twist angle obtained using
Eq. (1) and the rigid twist angle from prescribed control angles, both taken from the 5th revolution.
Time accurate results compare well with experimental data until 270 deg azimuth. (Rigid motion of the
blade is also shown for reference.) The experiment shows four extrema in response, whereas the TA
computation shows five extrema. Between five and six extrema are expected since the blade oscillates
in torsion approximately 2.7 times per revolution. Additional details regarding the experiment than
currently published, such as uncertainties in measurements may help resolve the differences between
computation and experiment.

To date rotorcraft community tends to compare time-responses of forces between experiment and
CFD/CSD computations. Start time of a force response in an experiment is either not available or has
uncertainties. Often unprecedented procedures such as arbitrarily removing the mean from the
computations is followed [7] in LC methods that results in better comparisons with experiments. On
the other hand to minimize uncertainties fixed wing community historically has preferred [3, 24] to
compare results in frequency domain by performing Fourier transformation [25]. In addition flutter
computations needs unsteady airloads data in the form of Fourier coefficients [26]. In this paper Fourier
coefficient are compared between experiment and CFD/CSD computations. 

Fourier transformations were applied to the airloads to compute magnitudes and phase angles up to
20 harmonics with respect to the azimuth of the first blade. Figure 8 shows the comparison between the
computed and flight sectional normal force magnitude at r/R = 0.87. The differences between the two
data sets are slightly larger for the first four harmonics. The magnitudes become small after the 5th
harmonic. 

Figure 9 shows the scaled phase angle at various harmonics. The computed and measured phase
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Figure 6. Second mode response for base line case.

Figure 7. Comparison of tip twist angles at fifth revolution.



angles are scaled by the ratio of the magnitude of sectional normal force at a given harmonic to the
magnitude of the sectional normal force at the first harmonic (obtained from Figure 8). The phase
angles are scaled to eliminate the effects of noise at higher harmonics [25]. The computed scaled values
compare reasonably well with the scaled values of experimental data.

Figure 10 shows the comparison between computed and flight pitching-moment magnitude at r/R =
0.87. The comparison is similar to that observed for sectional normal force. Figure 11 show the scaled
phase angle for the pitching moment. As in Figure 9 the computed results agree reasonably well with
the experimental data.
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Figure 8 Sectional normal force at 87% radial station of HART II configuration for baseline
case.

Figure 9 Phase angles of sectional normal force at 87% station radial station of HART II
configuration for base line case.

Figure 10 Pitching moment at 87% radial station of HART II configuration for base line case.



The differences between the computed and measured data seen in Figs. 7 to 11 can be attributed to
the complexity of the HART II model compared to the simple blade for which better comparisons are
obtained in Ref. 10. The presence of the body may have resulted in the associated hub modes
influencing the experimental data. In this paper only the first flapping, torsion and lead-lag modes
available in the public domain at the time this research were used. Additional modes may be required
to reduce the observed differences between computational and experimental data. To date all
computations made for HART II by other researchers have included only blade structural properties.

Figure 12 shows a snapshot of vorticity magnitude and, surface pressure on the HART II body.
Wakes are modeled in the LC/DC approach [7], whereas here they are directly computed using the
RANS equations. The development of tip-vortices and bladewake structure can be seen in Figure 12.
This predictive capability of RANS approach used in the used in present time-accurate simulation helps
understanding complex flow phenomena such as blade-vortex interactions, dynamic stall etc. and their
impact on structural responses.

All computations were performed on the Pleiades super cluster of NASA [27]. One revolution for
the full HART II configuration required about 5 hours of wall clock time using 1024 processors.

4. CONCLUSIONS
Fluid/structure responses are computed for rotating blades by time-accurately integrating the Navier-
Stokes flow equations together with the modal structural equations. It is shown that such computations
can be performed with only primitive inputs from the measurements. Wakes are computed using the
Navier-Stokes equations, rather than using a linear aerodynamics model as in comprehensive analyses.
Application of time-accurate coupling resulted in a reasonable comparison with wind tunnel data.
Computations using measured modal data compare better with experiment than obtained using a beam
finite element model for the HART II configuration. This investigation advances the state-of-the-art in
modeling and analysis of complex rotorcraft configurations, and demonstrates a procedure to compute
transient flight conditions.
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