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1. INTRODUCTION 
Injuries to the back are considered the
most significant non-lethal medical
condition affecting the US workforce
[1]. Throughout their lives
approximately 80 percent of adults will
experience back pain and 4-5 percent of
the population has an acute low back
pain episode every year [2]. Low back
injuries require extensive treatment and
often result in long periods of absence
from work for the injured worker. Back
injuries occurring at work account for
20 percent of all US workers’
compensation claims, this translates to
33-41 percent of all workers’
compensation costs, creating a drain on
the economy totaling in the billions of

dollars [3, 4]. 
One of the leading risk factors for

the development of low back disorders
is continuous exposure to whole-body
vibration (WBV) [5, 6]. WBV elevates
spinal load as indicated by
biomechanical and biological research
[7]. Spinal loading causes muscle fatigue
in the supporting musculature and has
been shown to cause damage to the
spinal column [8-11]. WBV can also
degrade other systems in the body
hampering the function of the
musculoskeletal, cardiovascular,
cardiopulmonary, metabolic, endocrine,
nervous and gastrointestinal systems
[12]. There are also safety concerns
associated with WBV, vibration
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frequencies which match the resonant
frequency of the body have been shown
to hamper a worker’s ability to perform
job tasks [13]. Extended periods of
vibration exposure lead to worker
irritability, fatigue, stress, and problems
with concentration. Previous research
indicates a causal relationship between
WBV exposure and the large number of
low back disorders among public transit
drivers [14, 15].

Numerous studies have shown an
association between exposure to WBV
in professional driving occupations and
back pain [6, 16, 17]. A dose-response
relationship has been established
showing that increases in the duration
of WBV exposure [18], the magnitude of
the WBV exposure [19] or both are
associated with an increased risk for
injury. The assessment methods for
measuring Time Weighted Average
(TWA) WBV exposures and multiple
shock exposure are described in the ISO
standard documents ISO 2631-1:1997
[20] and ISO 2631-5:2004 [21],
respectively, and provide guidance on
the assessment of health effects.
However, to date the assessment
methods used to measure multiple
shock exposures in ISO 2631-5 [21] is
relatively new and has not been
extensively used.

Back disorders have been identified
as the largest source of early permanent
disability among mass transit operators
[15]. In the greater Seattle Metropolitan
area, transit drivers experienced a high
number of low back claims when
compared to other metropolitan
employees. The main description for
the cause of low back injuries were
‘driving’ and ‘jarring/bouncing’
accounting for 43% of all low back
injuries. Safety officials indicate that the
bus seat “bottoming out” may be one
possible source for injury. Seattle
Metropolitan bus drivers are off work
longer than all other occupations within
the same agency combined, missing 13
days compared to a median of 8 days for

all other occupations. The rate of low
back injury among bus operators was
3.4%, a rate which is consistent with the
incidence of accepted back injury claims
in Washington State for specialized
(3.4%) and general (3.1%) freight
trucking [22]. The ‘jarring/bouncing’
and ‘bottoming out’ of bus driver seats
suggests that further investigation of
impulsive vibration exposures is
needed.

Seats can perform differently in
their ability to attenuate vibration
exposure for the driver. In some cases
the seat can amplify the exposure and
the understanding of seat performance
is not well quantified [23, 24]. In
addition, impulsive exposures have
recently been identified as a possible
risk factor for low back disorders and
the International Organization for
Standardization (ISO) has published
new guidelines for measurement and
assessment of impulsive exposures [21].
The magnitude of the impulsive-related
risk amongst bus drivers has not been
well characterized. Currently there is a
wide array of seats that can be selected
for installation in Metropolitan buses. 

Using a standardized test route, and
calculating time-weight average (TWA)
and impulsive WBV exposure
parameters from ISO 2631-1 and ISO
2631-5 respectively, the purpose of this
study was to determine whether there
are performance differences in WBV
attenuation between two bus seats made
by two different major bus seat
manufacturers. In addition, second goal
of this study was to determine whether
there were differences in WBV
attenuation between a standard foam
and silicone foam seat pan. Currently,
based on King Country Metro repair
records, the average life of a standard
foam seat pan is six months, and after
the foam fatigues, replacement of the
seat pan is required. Silicone foam is
being offered as an alternative seat pan
material and is purported to have a
fatigue life of five years. If the silicone
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foam seat pad has the same or better
performance than the foam seat pad,
then this may be a cost effective
alternative due to its purported longer
life. Beyond simply comparing seats, an
additional goal of this study was to
determine whether there were
differences in WBV exposures based on
road type.

2. METHODS
2.1 SEATS TESTED
The first goal of this study was to
determine whether there were WBV
exposure differences, over a
standardized test route, using two
different seats from two different seat
manufactures. To enable a controlled
comparison between seats, both seats
used in the study were brand new. The
two seats used in the study were the
Recaro Ergo M (Seat 1) and USSC Q91
(Seat 2). Both seats have foam seat pans,
air suspensions, and adjustable lumbar
support.

A second goal of this study was to
determine whether there were WBV
exposure differences based on the type of
foam used to construct the seat pan. As a
result a third seat was introduced to the
study which was identical to Seat 2,
except the foam seat pan in Seat 2 was
replaced with a silicone seat pad (Seat 3).

2.2 BUS AND TEST ROUTE
The standardized test route was
designed to include three common road

types encountered by bus drivers and
included 12 km of city streets, 29 km of
new freeway, 10 km of old freeway and a
1 km circular route containing 10 speed
humps (4 m wide). The same 12.2 m
New Flyer (Manufactured in Winnipeg,
Manitoba) low floor bus was used
throughout the entire study. This is
important as it has been shown in prior
research that there are large variations
in vibration magnitude within and
between vehicle categories and types
[25]. The runs were completed with no
passengers other than the driver and
two data collection staff (one or two
researchers).

2.3 WHOLE BODY VIBRATION
INSTRUMENTATION
Figure 1 shows the schematic and set up
of the WBV data collection system. A
Personal Digital Assistant (PDA)-based
portable WBV data acquisition system
was used to collect WBV exposures per
ISO 2631-1 and 2631-5. Raw,
unweighted tri-axial WBV
measurements were collected at 640 Hz
using a seat pad ICP accelerometer
(model 356B40; PCB Piezotronics;
Depew, NY) mounted on the driver’s
seat and simultaneous z-axis
measurements were to be collected with
an identical accelerometer mounted
immediately adjacent to the driver’s
seat. Accelerometer calibrations were
conducted prior to all data collection
sessions using a Type 4294 Bruel &
Kjaer Calibration Exciter. The system
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Figure 1. Schematic of WBV Data Collection System
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calibrations were evaluated using a
LabVIEW program written to analyze
and verify calibration exciter
measurements.

As shown in Figure 1, two Larson
Davis HVM 100’s loggers were used as
accelerometer amplifiers and a Pocket-
PC PDA with 2 Gigabytes of compact
flash memory, an external battery pack,
and a PCMCIA expansion pack
instrumented with a data acquisition
card was used to collect the WBV
signals. Using the serial port on the
PDA, once every second, Global
Positioning System (GPS) data was also
collected and integrated with the WBV
exposure data to identify the location,
velocity, and type of road associated
with the WBV exposures.

2.4 SUBJECTS
The mean age of the participants was
50.8 (range 38-60) the mean weight of
subjects was 80.9 kilograms (range 49.4-
116.1 kg) and an equal number of male
and female drivers participated in the
study. Half of the study participants
were part-time bus drivers and half-
were full time bus drivers. The majority
of drivers worked year round with a
mean of 241.7 driving days per year
(range 150-300). The majority of drivers
had less than 10 years of experience
driving buses with a mean of 9.9 years
(range 1-22).

2.5 DATA ANALYSIS
The data was analyzed using a WBV data
analysis program written in LabVIEW.
The LabVIEW routine used a Matlab-
based program to appropriately weight
the continuous signals [26] and WBV
calculations were performed as outlined
in ISO 2631-1-1997 and 2631-5-2004.
WBV measures were calculated over the
whole route (all road segments) as well as
by individual road segment. 

The ISO 2631-1 parameters were
normalized to reflect 8 hours of driving
and evaluated and compared between
seats, road types, seat settings and driver

weights included: 
The eight hour root mean square

average vibration (Aw(8)) calculated at
the floor and at the seat pan of the bus
(m/s2).

(1)

The eight hour vibration dose value
(VDV(8)) which is more sensitive to
impulsive vibration and reflects the
total, as opposed to average vibration,
over the measurement period at the seat
pan and floor of the bus (m/s1.75).

(2)

TWA Peak – the highest magnitude
of Aw measured during the measurement
period (m/s2). 

The ISO 2631-5 parameters were
normalized to reflect 8 hours of driving
and evaluated and compared between
seats, road types, seat settings and driver
weights included: 

The eight hour daily dose (Dk(8)) is
designed to be an estimate of daily
vibration dose (m/s2).

(3)

The eight hour static compressive
dose (Sed(8)) measured in megapascals,
which has been developed through
biomechanical modeling, is designed to
capture the linear relationship between
peak acceleration and input shocks to
responses in the spine (MPa).

(4)

In addition to the WBV measures
covered by Part 1 and Part 5 of the ISO
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2631 standard, the Raw (+) Peak – the
highest vibration measured in the
positive direction (Z-axis topping out),
the Raw (-) Peak – the highest average
vibration measured in the negative
direction (Z-axis bottoming out).

2.5 STATISTICAL ANALYSES
The data segments analyzed with the
LabVIEW routine created output files
with all the desired summary measures.
In order to determine whether there
were differences in WBV exposures
between the seats made by different
manufactures (Seat 1 and Seat 2),
repeated-measures analysis of variance
(RANOVA) methods were used. The
same methods were used to test whether
there were differences between the
standard foam (Seat 2) and silicone
foam seat (Seat 3).

3. RESULTS
3.1 WBV RESULTS COMPARING
SEATS AND SEAT ATTENUATION
3.1.1 Comparison of different seat
manufacturers (Seat 1 versus Seat 2)
The left portion of Table 1 compares the
seats of the different manufacturers (Seat
1 and Seat 2). As shown in Table 1, there
were no differences between seats in
average vibration exposures (Aw).
However, according to ISO 2631-1, when
Crest Factors are above 9, this indicates
impulsive exposures were likely

encountered; Aw may be underestimated
and should be interpreted with caution.
As an alternative, the Vibration Dose
Value (VDV) is recommended for
evaluation when impulsive exposures are
present. As revealed in Table 1, there were
no differences between seats in VDV
exposures. Finally, the daily acceleration
dose (Dk), measured at the seat pan, was
significantly lower for Seat 1 when
compared to Seat 2. This measure, part of
ISO 2631 part 5, is designed to give a
prediction of long term health effects
related to spinal compression. The
differences in performance between seats
in daily acceleration dose and crest factors
suggest that there is some difference in the
performance of seat suspensions when
attenuating impulsive exposures.

3.1.2 Foam (Seat 2) versus silicone
(Seat 3) seat pan
As shown in Table 1, there was virtually
no difference in exposures between the
seat with the standard foam seat pan
(Seat 2) and the silicone foam seat pan
(Seat 3). 

3.1.3 Floor versus Seat
Not shown in Table 1 are the p-values
comparing the floor versus the seat
WBV exposures. In all instances, with
the exception of crest factor, the seats
significantly attenuated all WBV
exposures. 

noise notes volume 11 number 1

Table 1. Mean (SEM) WBV exposures over the whole route, normalized to an 8 hour day,
comparing Z-axis floor and seat measured exposures by seat type (n=12).

Parameter Accelerometer p-value Seat 1 Seat 2 Seat 3 p-value
Location Seat 1 v 2 Seat 2 v 3

Aw(8) (m/s2) Floor 0.12 0.45 (± 0.01) 0.43 (± 0.01) 0.48 (± 0.02) 0.02
Seat 0.72 0.41 (± 0.01) 0.40 (± 0.02) 0.40 (± 0.01) 0.89

Crest Factor Floor 0.40 19.8 (± 1.63) 21.7 (± 1.48) 14.9 (± 0.98) 0.001
Seat 0.001 9.25 (± 0.44) 11.6 (± 0.34) 11.9 (± 0.52) 0.45

VDV(8) (m/s1.75) Floor 0.79 12.0 (± 0.38) 12.2 (± 0.43) 11.9 (± 0.77) 0.13
Seat 0.98 9.26 (± 0.27) 9.24 (± 0.42) 9.33 (± 0.36) 0.69

Dk (8) (m/s2) Floor 0.54 14.0 (± 1.06) 13.3 (± 0.67) 12.4 (± 1.10) 0.51
Seat 0.01 9.01(± 0.39) 11.5 (± 0.84) 12.1 (± 0.74) 0.23

Speed (km/h) — 0.13 55.7 (± 1.56) 53.1 (± 1.58) 57.5 (± 1.03) 0.04  
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3.2 WBV RESULTS COMPARING
ROAD TYPES
WBV exposures measured across the
different road segments was compared
across four ISO 2631-1 time weighted
vibration exposure parameters (Aw,
Crest Factor, VDV and TWA Peak) and
four ISO 2631-5 impulsive exposure
parameters (Raw (+) Peak, Raw (-)
Peak, Dk and Sed). Since there were very
few differences between seats, Tables 2
shows the vibration exposures, averaged
across all seats, grouped by road type.

As can be seen in Table 2, with the
exception of Crest Factor (which is a
normalized measure), z-axis exposures
were the highest and the y- and x-axis
exposures were lower. The y-axis
exposures (side-to-side) tended to be
slightly higher than the x-axis (fore-aft)
exposures. In general, most WBV
exposures were low and below
recommended exposure limits;
however, there were a few exceptions.
The z-axis measures for Aw(8) was
highest and above the 0.5 m/s2 action
limit for the older freeway segment.
However, given that the z-axis crest
factors were above 9 in the street and
speed hump segments, this indicates

that impulsive exposures were
encountered, the Aw (8) exposures
should be interpreted with caution, and
the VDV(8) evaluated. Table 2 shows
that there were significant differences
across road types in z-axis VDV(8)
measurements, with the VDV(8)
exposures above the action limit in the
street, older freeway and speed hump
segments.

Differences in peak exposures
between seats grouped by road type are
shown in Figure 2. The results show
that there were some differences
between Seat 1 and Seat 2, but no
significant differences between Seat 2
and Seat 3. Across all seats, the highest
peaks (TWA Peak, Raw (+) Peak, and
Raw (-) Peak) were measured on the
street segment while the lowest peak
measurements were on the freeways.

There were significant differences
in Sed(8) exposures between seats, these
exposures are shown by road type in
Figure 3. The highest exposures for
static compression were exhibited in the
street segment with the silicone seat
(seat 3), Seat 2 was intermediate, and
Seat 1 had the lowest static compressive
doses. With the exception of the streets,
the seat with the foam seat pan (seat 2)
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Table 2: Mean (SEM) WBV tri-axial exposures, normalized to an 8 hour day, comparing seat
measured exposures by road type (n=12).

Parameter Axis City Streets Speed HumpsNew Freeway Old Freeway p-value
Aw(8) (m/s2) X 0.14 (± 0.01) 0.17 (± 0.01) 0.11 (± 0.01) 0.13 (± 0.01) <0.0001

Y 0.11 (± 0.01) 0.15 (± 0.01) 0.11 (± 0.01) 0.12 (± 0.01) <0.0001
Z 0.36 (± 0.01) 0.36 (± 0.01) 0.43 (± 0.01) 0.51 (± 0.01) <0.0001

Crest Factor X 14.1 (± 1.54) 8.4 (± 0.50) 8.8 (± 0.25) 7.4 (± 0.27) <0.0001
Y 13.9 (± 0.72) 7.3 (± 0.33) 8.4 (± 0.22) 8.3 (± 0.27) <0.0001
Z 14.5 (± 0.63) 11.8 (± 0.49) 8.2 (± 0.22) 6.9 (± 0.23) <0.0001

VDV(8) (m/s1.75) X 3.4 (± 0.16) 4.1 (± 0.22) 2.5 (± 0.14) 2.7 (± 0.17) <0.0001
Y 2.9 (± 0.09) 3.3 (± 0.08) 2.1 (± 0.06) 2.4 (± 0.07) <0.0001
Z 9.4 (± 0.24) 9.6 (± 0.37) 8.9 (± 0.18) 10.3 (± 0.22) <0.0001

Dk(8) (m/s2) X 7.3 (± 1.47) 6.4 (± 0.39) 3.9 (± 0.27) 4.2 (± 0.31) 0.004
Y 4.0 (± 0.21) 4.6 (± 0.18) 2.5 (± 0.10) 2.7 (± 0.12) <0.0001
Z 12.8 (± 0.77) 13.2 (± 0.85) 8.9 (± 0.26) 9.4 (± 0.28) 0.03

SED(8) (MPa) Z 0.45 (± 0.03) 0.42 (± 0.03) 0.29 (± 0.03) 0.30 (± 0.03) <0.0001
Speed (km/h) — 28.3 (± 0.89) 29.9 (± 0.69) 82.6 (± 1.26) 82.9 (± 1.64) <0.0001  
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performed similarly to the seat with the
silicone seat pan (seat 3) and Seat 1
always had significantly lower Sed(8)
values than Seat 2.

4. DISCUSSION
In a standardized controlled setting,
this study evaluated and compared two
different seats and two types of seat
foam for attenuating WBV exposures.
Seat 1 performed significantly better
than Seat 2 in the attenuation of
impulsive WBV exposures, however, no
seat performed better on all road types.
There were significant differences in

WBV exposures across the various road
types. As a result, a possible
administrative control to reduce a bus
driver’s exposure to WBV could involve
assigning routes based on road type,
with the goal of limiting or distributing
WBV exposures based on road type. The
study was conducted in North America,
however, the results of this study may
translate to European busses which fall
under the current European Directive
2002/44/EC [27].

4.1 WBV RESULTS COMPARING
SEATS
The WBV exposure differences between
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Figure 2. Mean (SEM) time weighted average TWA Peak, Raw (+) Peak, and
Raw (-) Peak by seat grouped by road type (n=12)

Figure 3. Mean (SEM) daily static compressive stress (Sed(8)) across seats
grouped by road type (n=12)
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Seat 1 and Seat 2 showed that the seats
performed similarly in attenuating
TWA WBV exposures, however, Seat 1
performed better in attenuating
impulsive exposures. The results also
indicated that no seat performed
universally well on all road segment
types. In the future, it would be
interesting to evaluate the performance
of commercially available semi-active
seat suspensions.

The WBV exposures between Seat 2
and Seat 3 were not significantly
different from one another. One
interesting result was that there were
significant differences between Seat 2
and Seat 3 in the transmission of peak
vibrations from the floor to the seat.
The denser silicone foam appears to
transmit more of the peak vibration
signal to the operator.

4.2 WBV RESULTS COMPARING
ROAD TYPES
This study found significant differences
in vibration exposure across the road
types with z-axis street segment
exposures near or slightly above the
established action limit (9.1 m/s1.75) for
VDV(8). Aw(8) z-axis exposures were
below the action limit (0.5 m/s2) as
established by ISO 2631-1. However, as
indicated in ISO 2631-1, Aw

measurements with crest factors above 9
should be interpreted with caution.
This was the case with the WBV data
collected from the street segments.

High VDV(8) z-axis exposures were
also present in the older freeway
segment and above the action limit. The
continuous nature of WBV exposures
combined with the large number of
impulsive exposures from expansion
joints indicates that both TWA and
impulsive WBV exposures were present
on the freeway segments. The exposure
differences between the different road
types indicate that one potential work
organization intervention could be
route rotation so that drivers do not
spend excessive time on noxious routes

and/or drive on different segments to
vary the exposure between continuous
and impulsive vibration exposures. It is
noteworthy that the freeways had the
highest Aw(8) exposures due to the
continuous nature of the WBV
exposures. This was due to the on/off
nature of the street WBV exposures
associated with alternating WBV
exposures between moving/driving and
being idle at stoplights. The freeway
routes represent a fairly constant
exposure which leads to less idle time
than the street segments, however, the
street segments have more starts and
stops from stop lights and bus stops.

4.3 LIMITATIONS OF THE STUDY
One potential limitation in the study
was due to practical limitations
associated with switching seats, as a
result, seat order was not randomized.
All subjects tested the seat in the same
order (Seat 1, Seat 2, Seat 3). The sample
size (n=12) was somewhat small, testing
more subjects would increase the ability
to determine if there were any
systematic WBV exposure effects
associated with the conditions evaluated
in this study.
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FOOLISH LANDLORD LOSES LICENCE FOR LACK OF A LIMITER

Angus (Scotland) councillors have suspended the licence of Montrose pub Albert Bar’s indefinitely until a
noise-limiting device is installed. The licencing board had received a number of complaints from neighbouring
residents and asked Angus Council officers to work with the pub and people living nearby in a bid to resolve
the issue. A noise management plan was agreed and the licensee was to install a noise limiting device which
was to be operated to the satisfaction of officers to prevent continuing complaints. These are attached to the
power supply of a venue’s amplification system to monitor noise level. If it exceeds a pre-set level, the device
cuts the system’s electricity supply. Licensing board chairman Councillor John Whyte said that the step had
been taken because a limiter had not been installed despite reminders and “extensive support and guidance
from council officers” leading to further complaints.


