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Marijuana has been used recreationally and medicinally for centuries. The principle psychoactive 
component, ∆9-tetrahydrocannabinol (∆9-THC), activates CB1 cannabinoid receptors (CB1Rs). 
CB1R agonists and antagonists could potentially treat a wide variety of diseases; unfortunately, 

therapeutic doses produce unacceptable psychiatric effects. “K2” or “Spice” (K2/Spice), an emerging drug 
of abuse, exhibits psychotropic actions via CB1R activation. Because of structural dissimilarity to ∆9-THC, 
these drugs are widely unregulated and touted as “legal” marijuana. This review summarizes current and 
future therapeutic uses of CB1R ligands and provides a historical perspective of the K2/Spice “phenom-
enon” so the reader can decide if marijuana-based drugs will truly provide innovative therapeutics or 
instead perpetuate drug abuse.
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Introduction

Although controversial, marijuana has been used medicinally for 
centuries (1) and several clinically available products of either 
∆9-tetrahydrocannabinol (∆9-THC, the principal psychoactive com-
ponent of marijuana) or structurally related derivatives are available 
for safe and efficacious treatment for several diseases when admin-
istered appropriately and under proper medical supervision (2). 
Unfortunately, ∆9-THC-based drugs produce both therapeutic and 
undesirable psychotropic actions by activating CB1 cannabinoid 
receptors (CB1Rs) in the central nervous system (CNS).

K2, also called “Spice” (K2/Spice), is a rapidly emerging 
drug of abuse that is touted as “legal marijuana” [reviewed in (3)]. 
Although structurally distinct from ∆9-THC, the synthetic com-
pounds in K2 products are derivatives of the well-characterized 
aminoalkylindole (AAI) class of ligands that also bind and activate 
CB1Rs. Because AAIs are structurally dissimilar to ∆9-THC, gov-
ernment regulation of K2 products in many states is inconsistent 
or even lacking, leading to widespread use and heavy marketing 
to teens and first-time drug users. In marked contrast to the rela-
tively “safe” and established consequences of marijuana use, many 
symptoms associated with K2/Spice use are distinct from those of 
marijuana and may be potentially life threatening. Therefore, users 
experimenting with K2 products may, in fact, be exposed to a drug 
that is extremely variable in both composition and potency, and 
may develop serious adverse effects. 

This review will provide a brief introduction to basic cannabi-
noid pharmacology, followed by a summary of current and future 
therapeutic uses of marijuana-based CB1R agonists and antagonists. 
Finally, a historical perspective of the K2/Spice “phenomenon” 
from inception to present day use of novel synthetic cannabinoids 
as designer drugs of abuse will be presented. The purpose of this 
review is to provide adequate information to allow readers to 
decide if the future development of marijuana-based drugs will 
truly provide innovative therapeutics or instead merely perpetuate 
the use of novel designer drugs of abuse. Although much evidence 
suggests that drugs acting at CB2Rs might also be developed as 
very efficacious agents to treat inflammation and other disorders 
[reviewed in (4)], this review will focus only on the therapeutic 
potential for drugs acting at CB1Rs.

Historical Perspective of Marijuana  
and Cannabinoids

Medicinal and Recreational Uses 

Since the earliest known use of Cannabis sativa fibers found in 
China dating from around 4000 BCE, cultures throughout the 
world have been using cannabis-derived products (Figure 1) (1). 
In many ancient cultures (e.g., Chinese, Indian, and Tibetan), the 
seeds and fruit were used to treat a variety of ailments including 
gastrointestinal disturbances, seizures, malaria, pain of childbirth, 

snake bites, and many more (5). Aside from medicinal usage, the 
psychoactive properties of cannabis were also realized, and its 
use in religious ceremonies, such as those conducted by Tantric 
Buddhists, Hindus, and ancient shamans (5), became common. In 
addition to medicinal and religious uses, cannabis has been widely 
employed as a recreational drug for centuries (1).

By the end of the nineteenth century, use of cannabis for 
medicinal purposes had grown and was supported by early scien-
tific articles. As such, drug companies began marketing cannabis 
extracts as medicinal tinctures. In the early twentieth century,  
passage of the Pure Food and Drug Act of 1906 in the United 
States improved the safety of food and medicinal products by 
requiring labels to note dangerous contents, including cannabis 
(6). After additionally passing the Harrison Act of 1914, which 
grouped cannabis together with other illicit drugs such as cocaine 
and heroin, the marketing and use of cannabis-derived products 
decreased significantly. Reduced commercial interest in cannabis 
also corresponded with the development of more efficacious, 
safer drugs and with political pressure exerted by drug companies 
(1, 6). Subsequently, recreational use of cannabis products (such 
as marijuana) grew, and fear of the increasing marijuana abuse 
resulted in passage of the Marihuana Tax Act of 1937. Soon after 
implementation of this act, individual states subsequently out-
lawed the use, possession, or distribution of marijuana and other 
cannabis products (1, 6). Although illegal, recreational use soared 
during the 1960s and 1970s and continues to be high today, 
where approximately 50% of the population of the United States is 
reported to have tried cannabis at least once (7). 

Isolation of ∆9-Tetrahydrocannabinol (∆9-THC),  
the Psychoactive Component of Marijuana

Prior to the 1960s, few modern scientific studies had been pub-
lished regarding cannabis. In 1964, Gaoni and Mechoulam first 
identified the principle psychoactive compound, ∆9-tetrahydrocan-
nabinol (THC) (8). This renewed interest in the cannabinoid field 
and led to the isolation and synthesis of many additional cannabi-
noids and eventually the discovery of the endogenously occurring 
cannabinoids, the endocannabinoids (see following and Figure 
1). Until as recently as the late 1980s, most scientists believed 
the effects of cannabis were not receptor-mediated because of the 
highly lipophilic nature of cannabinoids, which allowed these 
compounds to easily diffuse into and across cell membranes (9).  
In 1988, the first cannabinoid receptor (now classified as CB1) 
was isolated (10) and subsequently cloned (11). Discovery of 
CB1Rs sparked renewed interest in cannabinoids as possible  
therapeutic candidates. 

Discovery of CB1 and CB2 Receptors

CB1 receptors (CB1R) are constitutively active pertussis toxin–sensi-
tive G

i/o
-coupled G protein coupled receptors (GPCRs) (12). CB1Rs 
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are located throughout the body, 
with the highest density expressed 
in the central nervous system (CNS). 
They are involved in the regulation of 
many physiological processes, includ-
ing energy balance (13) as well as 
arterial tone and vasorelaxation (14). 
CB1Rs are the most abundant GPCRs 
in the CNS, expressed in densities 
similar to that of γ-amino butyric acid 
(GABA) and glutamate receptors. The 
greatest populations of CB1Rs are 
located in the hippocampus, basal 
ganglia, and cerebellum (15). Agonists 
for CB1Rs, such as ∆9-THC, produce 
psychoactive properties character-
istic of cannabis use (16). However, 
because very few CB1Rs are located 
in the brain stem (which controls 
vital physiological functions), ∆9-THC 
and other CB1R agonists have rela-
tively low toxicity except at extremely 
high doses (16). 

In the early 1990s, a second 
cannabinoid receptor (CB2R) was 
molecularly cloned (17). Like the 
CB1R, CB2Rs are constitutively 
active pertussis toxin–sensitive G

i/o
-

coupled GPCRs (18). Unlike CB1Rs, 
CB2Rs are primarily localized to 
immune cells in the periphery, that 
is, outside of the CNS (18). The 
greatest concentrations of CB2R 
mRNA are present within the spleen, 
tonsils, and thymus (19); thus, 
CB2Rs are recognized to be involved 
in modulation of immune function 
(18). Although normally absent from 
the CNS, during neuroinflamma-
tory conditions CB2Rs can be found 
within the brain and brain stem 
(20) where CB2Rs are expressed on 
microglia, the resident macrophages 
of the CNS (18). Selective CB2R  
agonists do not produce psychoac-
tive effects but instead suppress 
immune function.

When an agonist such as 
∆9-THC binds these CB1Rs and 
CB2Rs, adenylyl cyclase activity is 
inhibited and intracellular concen-
trations of cAMP are reduced (21) 
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Figure 1. Timeline of ancient cannabis use to modern day banning of K2 products. 
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(Figure 2). In addition, activation of both CBR types results in 
phosphorylation and stimulation of the mitogen-activated protein 
kinases extracellular signal–regulated kinase 1(ERK1) and ERK2 

(12, 14). CB1R, but not CB2R, agonists additionally inhibit distinct 
voltage-gated calcium channels and activate inwardly rectifying 
potassium channels (12, 14). 
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Figure 2. Synthesis, binding, signaling, and degradation of endocannabinoids in neurons. Endocannabinoids are produced on demand in post-synaptic 
neurons by stimuli that result in elevations of intracellular Ca2+ levels, activating synthetic enzymes such as diacylglycerol lipase (DAG-lipase). Synthesized endo-
cannabinoids such as 2-arachidonyl glycerol (2-AG) then diffuse into the synaptic space, travel in a retrograde manner, and bind to CB1Rs on presynaptic neurons. 
Retrograde signaling produced by endocannabinoid binding to presynaptic CB1Rs results in inhibition of adenylyl cyclase and activation of mitogen-activated 
protein kinase (MAPK) activity. However, the inhibitory actions of cannabinoids on neurotransmission result primarily from hyperpolarization of presynaptic neurons 
resulting from inhibition of Ca2+ influx via voltage-gated Ca2+-channels and loss of intracellular K+ ions via opening of inwardly rectifying cannels. Hyperpolarized 
presynaptic neurons produce less exocytosis of neurotransmitter, such as γ–aminobutyric acid (GABA), resulting in decreased neurotransmission. Endocannabinoid 
actions are finally terminated by hydrolysis due to action of presynaptically located metabolizing enzymes such as monoacylglycerol lipase (MAG-lipase). 
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Cannabinoid Ligands 
Are Derived from 
Diverse Structural 
Groups

In general, cannabinoids 
are a diverse group of com-
pounds containing natural, 
synthetic, and endogenous 
ligands that act selectively 
at one receptor or nonselec-
tively at both cannabinoid 
receptors (12). Ligands that 
bind to CBRs are derived 
from four basic structural 
classes (Figure 3) [reviewed 
in (22)]. First, the classi-
cal cannabinoids (Figure 
3A) consist of dibenzopy-
ran derivatives (including 
∆9-THC), which act as 
partial agonists at CB1R and 
CB2Rs. Also included in 
the classical group are other 
plant cannabinoids, such 
as the partial CBR agonist 
cannabinol, cannabidiol, (a 
natural cannabinoid devoid 
of psychoactive effects), and 
various synthetic cannabi-
noids such as HU-210 (a full 
agonist at both receptors) 
(23). Second, the nonclas-
sical cannabinoid group 
(Figure 3B) lacks a pyran 
ring structure and includes 
cannabinoids such as 
CP-55,940, a potent agonist 
at CB1R and CB2R. Third, 
the aminoalkylindole group 
(Figure 3C) of cannabinoids 
includes WIN-55,212-2, 
which possesses slightly 
higher affinity for the CB2R 
than for CB1R. Lastly, the 
eicosanoid group of cannabi-
noids (Figure 3D) includes 
the endocannabinoids, their 
synthetic derivatives, and 
noladin ether, a putative 
endogenous cannabinoid 
that binds with highest 
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affinity to CB1R. It is important to note that one of the major dif-
ferences between ∆9-THC and almost all synthetic cannabinoids 
is that whereas the former is a weak partial agonist at CBRs, the 
latter group of compounds (including HU-210, CP-55,950, WIN-
55,212-2, and many of their derivatives, Figure 3) are potent full 
CBR agonists (16).

Characterization of Endogenous Cannabinoids

While CB1Rs and CB2Rs were being discovered, the identification  
of the endocannabinoids was also reported. The first endocannabi-
noid discovered was anandamide (N-arachidonoylethanolamine or 
AEA), isolated from porcine brain (24). Soon after, two laboratories 
simultaneously isolated and reported the discovery of a second endo-
cannabinoid, 2-arachidonyl glycerol (2-AG) (25, 26). AEA is a partial 
agonist at CB1Rs (27) and a partial agonist or antagonist at CB2Rs 
(28). In contrast, 2-AG demonstrates full agonist activity at both 
CB1Rs (29) and CB2Rs (30). Although both endocannabinoids are 
metabolites of arachidonic acid and synthesized “on demand” (31), 
2-AG is found in much higher concentrations in the brain (29). AEA 
is synthesized from phosphatidylethanolamine via enzymatic con-
version by trans acylase and phospholipase D (31). Similarly, 2-AG 
is produced from phosphitidylinositol by action of the enzymes 
phospholipase G and diacylglycerol lipase (31). After synthesis, 
both endocannabinoids are immediately released into the intracel-
lular space (31) and interact with not only classically recognized 
cannabinoid receptors, but also with less well characterized GPCRs 
(e.g., GPR55) and ion channels (e.g., vanilloid receptor-type1) (12). 
Cellular re-uptake of endocannabinoids is still not well characterized 
and controversial [reviewed in (32)]; however, once endocannabi-
noids are returned to the cytoplasm, AEA undergoes rapid hydroly-
sis, primarily by the microsomal enzyme fatty acid amid hydrolase 
(FAAH) (31), whereas 2-AG is inactivated predominantly by mono-
glyceride lipase (MGLL) (31). 

The involvement of the endocannabinoid system has been 
implicated in numerous disease states such as obesity, cardiovas-
cular disease, and neurological disorders (33). The concentrations 
of endocannabinoids may change throughout the course of many 
diseases, and it has yet to be determined whether decreasing or 
increasing these concentrations may be advantageous in treating 
various diseases (34).

Behavioral Effects of CB1R Agonists

In addition to psychoactive effects that are elicited by CB1R activa-
tion in humans, acute administration of ∆9-THC or other CB1R 
agonists in rodents results in quantifiable actions, typically measured 
as a “tetrad” of behavioral effects composed of analgesia, catalepsy, 
hypothermia, and decreased locomotor activity (35). Administering 
∆9-THC to humans also results in physical relaxation, changes 
in perception, mild euphoria, reduced motor coordination, and 
decreased information processing (36). Furthermore, ∆9-THC, AEA, 

and other CB1R agonists stimulate appetite even in satiated animals 
(37), indicating an involvement of the endocannabinoid system in 
regulating energy balance (13). Synthetic analogs of ∆9-THC such as 
nabilone (Cesamet) (Figure 3) have been developed to stimulate 
appetite and reduce nausea in cancer and AIDS patients. In contrast, 
inverse CB1R agonists reduce eating and promote weight loss (38).

When ∆9-THC is administered chronically, tolerance develops 
to the acute effects owing, in part, to receptor down-regulation (39) 
and desensitization (40). Chronic and heavy use of cannabis has 
also been correlated with mild impairment of cognitive function, 
including decreased attention, verbal learning, and memory (41). 
It is unclear, however, whether these cognitive effects following 
chronic ∆9-THC exposure result from some type of adaptive process 
or instead arise from the acute actions of cannabis that are reversed 
upon cessation of drug exposure (36). Although only about 10% 
of chronic users develop dependence (36), chronic exposure to 
∆9-THC nevertheless increases the likelihood of the individual to 
develop psychiatric disorders (42).

∆9-THC also acts on CB2Rs. Because these receptors are pri-
marily located on immune cells, CB2Rs are not believed to impact 
behavior or produce euphoria or the other psychoactive effects 
that are noted with CB1R agonist administration. Rather, the 
well-known immunosuppressive effects of ∆9-THC are most likely 
mediated via activation of these CB2Rs (43).

Therapeutic Promise of Cannabinoids

Therapeutic Versus Adverse Effects of  
CB1R Ligands in Drug Development

Great opportunity exists for the development of cannabinoid-based 
drugs for a wide range of therapeutic applications (44). However, 
only three prescription products containing the non-selective  
cannabinoid agonists nabilone (Cesamet®), dronabinol (Marinol®), 
and ∆9-THC/cannabidiol (Sativex®) are currently available clinically 
for use as antiemetics, appetite stimulants, and analgesics (Figure 3) 
[reviewed in (45)]. Animal studies suggest that future development 
of selective CB1R agonists may provide many additional drugs that 
will prove useful for treatment of epilepsy, inflammation, neurode-
generation, cancer, anxiety, depression, and osteoporosis [reviewed 
in (46)]. CB1R antagonists–inverse agonists (such as rimonabant 
and taranabant) are also very effective for management of obesity in 
humans (47), and preclinical studies indicate that drugs in this class 
might be beneficial in treating drug abuse disorders, type-2 diabetes, 
liver fibrosis, certain types of inflammation, and psychosis [reviewed 
in (48)]. Unfortunately, in addition to the many potential beneficial 
uses, therapeutic doses of either CB1R agonists or antagonists–
inverse agonists exert many undesirable psychological, physiologi-
cal, and behavioral effects, greatly limiting their use. For example, 
in many patients CB1R agonists also produce euphoria, dysphoria, 
memory disturbances, tolerance, dependence, withdrawal, dimin-
ished psychomotor performance, and increased appetite (49). Several 
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adverse effects, including nausea, depression, and suicidal ideation, 
are similarly associated with chronic blockade of central CB1Rs by 
antagonists (50). In fact, the prevalence and severity of these nega-
tive consequences led to the abrupt discontinuance of all ongoing 
clinical trials of CB1R antagonists–inverse agonists in Europe and 
the United States [reviewed in (51)].

Therefore, while a tremendous potential exists for future 
development of efficacious drugs targeting CB1Rs for a variety of 
disease states, it will be essential to take measures to circumvent 
associated adverse effects occurring at therapeutic doses so that 
successful clinical development may be realized. The following 
sections of this review will first briefly summarize the current 
therapeutic indications for use of CB1R agonists and antagonist-
inverse agonists followed by a description of several potential 
avenues to minimize adverse, while maintaining beneficial, activity 
of these potentially valuable compounds. Finally, a brief listing of 
prospective future therapeutic uses for CB1R ligands, based on 
encouraging ongoing basic research findings, will be presented.

Current Licensed Therapeutic Uses of  
∆9-THC and Other CB1R Agonists

Although cannabis as been used (and abused) for centuries, indi-
vidual cannabinoid compounds were only made available for 
clinical use relatively recently [reviewed in (45)]. The first product, 
licensed in 1981, nabilone (Cesamet®), a synthetic derivative of 
∆9-THC, is prescribed to reduce nausea and vomiting associated 
with cancer chemotherapy (52). In 1985, ∆9-THC, marketed as 
dronabinol (Marinol®), was approved as an antiemetic for use in 
similar situations (53), and in 1992 was additionally marketed to 
stimulate appetite in conditions associated with excessive weight 
loss such as that occurring in AIDS (54). The newest clinically avail-
able cannabinoid, Sativex®, is an equal mixture of ∆9-THC and 
a plant-derived cannabinoid lacking psychotropic effects known 
as cannabidiol (55). This combination product was approved in 
2005 for management of neuropathic pain associated with mul-
tiple sclerosis and pain occurring in end-stage cancer patients (56). 
Interestingly, inclusion of the nonpsychoactive component can-
nabidiol in Sativex® appears to reduce many of the adverse effects, 
such as dysphoria and sedation, produced when synthetic can-
nabinoids such as ∆9-THC or nabilone are administered alone (57). 
Although ∆9-THC and nabilone are agonists at both CB1Rs and 
CB2Rs, the therapeutic effects for all marketed products thus far are 
thought to occur primarily in response to activation of CNS-located 
CB1Rs (45). The therapeutic applications approved for use of CB1R 
agonists described here have proven to be very valuable for use in a 
limited number of pathophysiological conditions. Further develop-
ment of CB1R agonists, however, has been significantly hampered 
by not only adverse psychotropic effects but also by the social 
stigma often associated with their use.

Recent Clinical Trials for Therapeutic Use of  
CB1R Inverse Agonists

Obesity is a major health problem in the United States where as 
many as 65% of adults are classified as overweight, 30% as obese, 
and 5% as morbidly obese (58). Although the toll of obesity on 
human mortality and morbidity is great (59), relatively few effica-
cious drugs (most with significant adverse effects) are available for 
treatment (60), and no new drugs have been successfully intro-
duced into this market in over ten years (61). Many recent studies 
support a hypothesis that obesity is associated with an overactive 
endocannabinoid system resulting from enhanced levels of endog-
enously produced cannabinoids acting at CB1Rs in both the CNS 
and periphery (62). Activation of CB1Rs by endocannabinoids in 
the CNS stimulates appetite and controls the metabolic processes 
that mimic the metabolic syndrome (63), whereas stimulation of 
CB1Rs in peripheral tissues such as the liver, pancreas, adipose tis-
sue, and skeletal muscle results in an overall slowing of metabolism 
and increase in visceral fat deposition in humans (64). As might 
be anticipated, blockade of excessive endocannabinoid signaling 
by use of CB1R antagonists–inverse agonists such as rimonabant 
(65) and taranabant (66) reduces weight and reverses many of 
the effects produced by an overactive endocannabinoid system 
occurring in obese animals and individuals. Furthermore, several 
large-scale clinical trials suggest that rimonabant also improves 
many other measures of the metabolic syndrome often occur-
ring in conjunction with obesity. For example, the one-year RIO 
(Rimonabant In Obesity) trial demonstrated that daily rimonabant 
improves several obesity-associated cardiometabolic risk factors 
(67). The SERENADE (Study Evaluating Rimonabant Efficacy 
in Drug Naïve Diabetic Patients) trial further reported not only 
body weight reduction but also an improvement in lipid profiles 
and glycemic control in drug-naïve type 2 diabetics in response 
to six months of daily rimonabant treatment (68). Lastly, the 
STRADIVARIUS (Strategy to Reduce Atherosclerosis Development 
Involving Administration of Rimonabant––The Intravascular 
Ultrasound Study) trial demonstrated that rimonabant given daily 
for eighteen months normalized total atheroma volume in patients 
with atherosclerosis (69). Unfortunately, it also became evident 
from these same clinical trials that chronic blockade, inverse ago-
nism, or both of central CB1Rs results in several significant adverse 
effects, including nausea, depression, and suicidal thoughts (66, 
70). The severity of these side effects, in fact, led to discontinuance 
of all ongoing clinical trials of the CB1R antagonist–inverse ago-
nist rimonabant in Europe (51), virtually assuring a lack of future 
FDA approval for use in the United States. Therefore, shortly after 
this decision was announced, all ongoing clinical trials and drug 
development programs directed toward discovery of novel CB1R 
antagonists–inverse agonists by several pharmaceutical companies 
in both the United States and Europe were terminated [reviewed in 
(47)]. Thus, it appears that either stimulation or blockade of CB1Rs 
located in the CNS by currently available drugs results in unaccept-
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able side effects that, at present, hamper future development of this 
potentially valuable drug class. 

Potential Mechanisms to Circumvent Adverse 
Effects Associated with Use of CB1R Ligands

Several avenues are being pursued to maximize the beneficial 
effects, while minimizing the negative consequences, of CB1R  
agonists and antagonists–inverse agonists with a purpose of 
enhancing efforts for future drug development (Table 1).

Peripherally Restricted CB1R Ligands
Activation or antagonism of CB1Rs located in the CNS results in 
unacceptable adverse psychiatric-associated effects (51). However, 
stimulation of peripherally located CB1Rs is also effective at sup-
pressing inflammation that leads to chronic pain states (71), and 
many of the positive metabolic benefits produced by CB1 antag-
onists–inverse agonists in obese animals are because of action at 
peripheral CB1 receptors (65). Therefore, development of selective 
CB1R ligands demonstrating relatively poor entry into the CNS 
may constitute a new class of therapeutic cannabinoids referred 
to as “peripherally-restricted CB1R ligands” [reviewed in (48)]. 
Drugs in this class would be predicted to demonstrate a markedly 
safer therapeutic profile than that observed for currently available 
CB1 agonists or antagonists. Significant progress has been made 
in this area and recent papers report the initial characterization 
of two peripherally restricted cannabinoid ligands URB447 (72) 
and SAB378 (73). URB447 is a nonselective CB1R antagonist and 
CB2R agonist that significantly reduces food intake and body 
weight in mice, and SAB378 is an agonist at both CB1Rs and 
CB2Rs shown to inhibit gastrointestinal motility. 

CB1R Allosteric Modulators
Like many GPCRs, CB1Rs contain both orthosteric and allosteric 
binding sites (74). Endocannabinoids bind to orthosteric receptor 
sites, but binding of drugs to an allosteric site alters the affinity, 
efficacy, or both produced by orthosteric ligands (75). Therefore, 
drugs acting at these distinct sites are referred to as allosteric 
modulators (AMs) because they are able to “fine-tune” the actions 
of endogenously produced and synthetically administered or 
endogenously produced drugs acting concurrently at orthosteric 
sites. AMs can either increase [e.g., positive AMs or (PAMs)] or 
decrease [e.g., negative AMs of (NAMs)] the potency and efficacy 
of endocannabinoids; thus, these drugs might overcome the many 
undesirable effects observed by either direct CB1R activation or 
blockade in the CNS by currently available drugs. For example, 
in diseases where endocannabioid concentrations are enhanced 
(e.g., obesity), NAMs would selectively decrease CB1R signaling 
exclusively in tissues where elevated amounts of endocannabi-
noids are found. Similarly, in conditions where enhancement of 
CB1R signaling is beneficial (e.g., neuropathic pain), PAMs would 
exclusively increase endocannabinoid action at CB1Rs in a tissue-

or neuron-specific manner. In both examples, AMs would provide 
an exquisite temporal and spatial modulation of CB1R signal-
ing to limit off-target, systemic toxicity. In addition, homeostatic 
endocannabinoid concentrations in noninvolved tissues would 
likely be maintained. Lastly, owing to reduced evolutionary con-
servation of allosteric relative to orthosteric GPCR binding sites, 
AMs exhibit markedly greater receptor-subtype specificity when 
compared to orthosteric ligands (76). Consequently, use of CB1R 
AMs would produce a very selective enhancement of the action 
of locally released endocannabinoids only at CB1Rs. Although no 
high-affinity selective PAMs for CB1Rs have yet been discovered, 
different groups have reported identification of two structurally 
distinct classes of NAMs that selectively modulate CB1R activity 
at nanomolar concentrations (74, 77). Interestingly, while com-
pounds derived from both structural classes of NAMs decrease 
the function produced by coadministered CB1R agonists, they 
(counter-intuitively) increase agonist binding affinity. Importantly, 
one of the CB1R NAMs identified (PSNCBAM-1) also produces 
hypophagia and body weight–reduction in an acute rat-feeding 
model that is similar to that observed previously for the direct act-
ing CB1R orthosteric antagonist rimonabant (77). Furthermore, 
PSNCBAM-1 also acts as a CB1R allosteric antagonist to modulate 
neuronal excitability in mouse cerebellum (78), suggesting that it 
or other similar compounds may be useful for treatment of cer-
tain CNS disorders. Whether these compounds will exhibit less 
adverse psychiatric effects relative to currently available orthosteric 
CB1R ligands, as hoped, has yet to be determined.

Inhibition of Endocannabinoid Degradation
In many diseases, endocannabinoids are released in a tissue-
specific manner in response to injury as a protective response (79). 
Endocannabinoids such as AEA and 2AG are quickly metabolized 
by the enzymes FAAH and MGLL, respectively; thus, the beneficial 
response observed in many cases is short-lived. Therefore, a phar-

Table 1. Strategies to Circumvent  
Adverse Effects of CB1R Ligands

Strategy Representative 
Compound

Observed  
Effect(s) Reference

Peripherally 
Restricted 
CB1R Ligands

URB-447
(CB1 antagonist) i Body Wt (72)

SAB-378
(CB1 agonist) i GI Motility (73)

CB1R Allosteric 
Modulators

ORG-27569
(Negative AM)

h Affinity
i Function (74)

PSNCBAM-1
(Negative AM)

i Body Wt
i Excitability (77)

FAAH Inhibitor URB-597 h AEA (83)

MGLL Inhibitor JZL-184 h 2AG (84)

CB1R Neutral 
Antagonist

AM-4113 i Body Wt
i Adverse  
   Effects

(89)
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macological intervention strategy to avoid adverse effects of directly 
administered synthetic CB1R agonists is, instead, to enhance and 
maintain selectively the amounts of endocannabinoids in dis-
eased tissues [reviewed in (32)]. In this case, activation of CB1Rs 
(and CB2Rs) is achieved indirectly by elevating endocannabinoid 
levels via blockade of their breakdown (80). Theoretically, CB1R 
activation would be localized to the tissues in which the elevated 
amounts of endocannabinoids occur, limiting adverse effects. One 
(of many) “proof of principle” study has demonstrated the thera-
peutic promise of such a strategy by demonstrating that blockade 
of degradation elevates the amount of endocannabinoids in local 
tissue, resulting in a reduction of inflammatory pain (81). However, 
a recent report also showed that elevated 2AG, but not AEA, levels 
owing to chronic blockade of their respective degrading enzymes 
results in functional antagonism of CB1R signaling (82). This find-
ing suggests that approaches employed to activate indirectly CB1Rs 
may not prevent all adverse effects associated with administration of 
direct CB1R agonists. Furthermore, because all endocannabinoids 
identified to date activate both CB1Rs and CB2Rs nonselectively, 
these strategies would primarily be beneficial only in specific dis-
eases in which concurrent activation of both CB1Rs and CB2Rs is 
desired. Several selective inhibitors of either FAAH and MGLL for 
in vivo use are commercially available, examples of which are URB-
597 (an FAAH inhibitor) (83) and JZL-184 (an MGLL inhibitor) 
(84). Although less well characterized and often controversial, an 
alternative mechanism to increase extracellular levels of AEA is to 
block the cellular uptake of this endocannabinoid by use of puta-
tive anadamide transport inhibitors (85).

Use of Neutral CB1R Antagonists
CB1Rs, like many other GPCRs, exhibit constitutive activity or 
basal receptor signaling in the absence of activation by agonists 
(86). Antagonists, which simply occupy the receptor and block 
the binding of endogenous agonists, have no effect on constitu-
tive GPCR activity and are referred to as “neutral antagonists.” In 
contrast, inverse agonists not only bind to CB1Rs but also pref-
erentially reduce their constitutive activity, thus producing effects 
that are opposite to that observed for agonists (87). Importantly, 
all CB1R antagonists-inverse agonists examined in clinical trials to 
date actually act as inverse agonists, and not as neutral antagonists 
(88). Therefore, it is possible that the adverse effects observed for 
currently available CB1R inverse agonists occur, in part, because 
of their interference with constitutive or intrinsic cellular endocan-
nabinoid signaling. Evidence from animal studies suggests that this 
might indeed be the case (89). Thus, development of neutral CB1R 
antagonists (that only alter ligand-dependent and not constitutive 
receptor signaling) might maximize the beneficial effects while 
minimizing the negative consequences of this potentially valuable 
class of drugs [reviewed in (48)].

Potential Future Therapeutic Uses  
for CB1R Ligands

The endocannabinoid system is ubiquitously expressed throughout 
the body and is responsible for the homeostatic control of many 
basic physiological processes (90). As might be expected, perturba-
tion of this important system appears to contribute to (or result 
from) the pathophysiological mechanisms underlying a number 
of disease states (79). In disorders where abnormally low amounts 
of endocannabinoids and reduced CB1R signaling contribute to 
pathology or where CB1R activation is protective, the use of CB1R 
agonists appears to be beneficial. For example, drugs that enhance 
CB1R signaling are particularly useful in animal models of neu-
rodegenerative diseases, neuropathic and other diverse types of 
pain, epilepsy, inflammation, gastrointestional disorders, cancer, 
anxiety, osteoporosis, and depression [reviewed in (46)]. On the 
other hand, disease states characterized by excessive endocannabi-
noid production and overactive CB1R signaling seem to respond 
positively to treatment with CB1R antagonists–inverse agonists. 
Therefore, drugs that reduce or block CB1R signaling are excep-
tionally effective in animal models of obesity, type-2 diabetes, drug 
abuse, psychosis, and chronic liver fibrosis [reviewed in (48)]. The 
key to successful development of efficacious agents derived from 
this valuable drug class will rely on future basic research to design 
highly selective CB1R ligands coupled with measures to limit 
associated adverse effects and to understand properly the distinct 
type of endocannabinoid dysregulation occurring in the specific 
diseases targeted for treatment.

Use of Novel Synthetic Cannabinoids  
as Designer Drugs of Abuse

Historical Perspectives of ∆9-THC  
Derivative Development

The history of the development of synthetic ∆9-THC and various 
∆9-THC analogs provides insight as to why cannabinoids have 
recently begun emerging as new designer drugs worldwide  
(Figure 1). It is thought that ∆9-THC was first synthesized as a 
chemical intermediate to aid in the production of cannabinol, 
which at the time was thought to be the active constituent in C. 
sativa (91). In 1964, ∆9-THC was determined to be the pharma-
cologically active component of C. sativa, which led to additional 
synthesis efforts (8, 92–94). Synthetic ∆9-THC was produced in 
1967 (91), and in the late 1960s the Levo (l)-isomer was identified 
as the biologically active form (8, 95–97). Early synthetic prepara-
tions contained both the Dextro (d)- and (l)-isomer, but improved 
synthetic and purification strategies provided means for isolating 
the biologically active isoform. In 1985, synthetic ∆9-THC was 
approved in the United States as an anti-emetic drug and mar-
keted as Marinol® (dronabinol). 
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Classical Cannabinoids

Several chemically similar ∆9-THC derivatives (e.g., classical  
cannabinoids) have also been developed. Cesamet® (nabilone) and 
HU-210 are examples of these analogs and exemplify how slight 
modifications of the ∆9-THC chemical structure can significantly 
alter potency (Figure 3A). The anti-emetic nabilone approaches 
∆9-THC in potency and is the only ∆9-THC analog that has ever 
been approved in the US. HU-210 has never been approved for 
medical use primarily because it is 100- to 800-fold more potent 
than ∆9-THC. 

Nonclassical Cannabinoids

Nonclassical cannabinoids, or cannabinoids that are chemically 
distinct from ∆9-THC (Figure 3B), have also been explored for 
potential therapeutic use. From the 1960s through the 1980s,  
scientists at Pfizer developed ∆9-THC analogs known as cyclohex-
ylphenols (91, 98) and designated as “CP” compounds. In general, 
these drugs have a simplified chemical structure consisting of two 
of the three ring structures of ∆9-THC. Several derivatives as well 
as their alkyl homologs have been developed. These include the 
compounds CP-50,556-1, CP-47,497, and the C8 akyl homolog 
of CP-47,497 [(C8)-CP-47,497]. CP-50,556-1, also known as 
levonantradol, is one of the original analogs shown to be a very 
effective analgesic and anti-emetic for use in patients undergoing 
chemotherapy (91). The water solubility of levonantradol makes 
it amenable for drug formulations and delivery, but adverse side 
effects prevented eventual FDA approval. CP-47,497 and (C8)-
CP-47,497 are at least thirtyfold more potent than ∆9-THC (99).

Aminoalkylindoles (AAIs)

Pravadoline is another nonclassical cannabinoid that bears little 
resemblance to ∆9-THC but is typically further classified as an 
aminoalkylindole (Figure 3C) (22). Research scientists at Sterling 
Drug Company developed pravadoline as an analgesic not associ-
ated with gastric irritation (91, 98). The drug has clinical effects 
similar to those of ∆9-THC and a higher relative potency. Receptor 
binding assays determined that pravadoline, and similar com-
pounds like WIN-55212-2, bind CBRs and act as cannabinoids 
(91, 100). Further studies demonstrated that these compounds 
retain high affinity for both CB1Rs and CB2Rs, produce behavioral 
effects similar to those produced with ∆9-THC, have cannabimi-
metic discriminative stimulus effects in rats and rhesus monkeys, 
and their effects are attenuated with cannabinoid antagonists (e.g., 
SR-141716A) (101). 

J. W. Huffman, a chemist at Clemson University, also synthe-
sized and characterized other AAIs. These compounds, designated 
by the initials “JWH”, include several naphthoylindoles, naph-
thoylpyrroles, and other related structures (98, 101, 102). JWH 
compounds show differential selectivity toward CB1Rs and CB2Rs. 

For example, JWH-
018 and JWH-073 
bind both receptors 
with differing affini-
ties, whereas JWH-
015 appears to bind 
only CB2Rs with high 
affinity. The pharma-
cological profiles of 
the JWH compounds 
are similar to those of ∆9-THC, with JWH-018 having greater rela-
tive potency (101, 103–113). 

Use as Designer Drugs in Europe and United 
States: Compounds in K2/Spice 

Major limitations in the development of new cannabinoids have 
been undesirable psychoactive properties and public percep-
tion of cannabinoid use. Recreational drug users, however, have 
renewed the interest in several historical cannabinoids. For obvi-
ous reasons, these individuals have identified cannabinoids that 
bind and mediate responses through CB1Rs, that are not regulated 
through existing statutes, and that are not detectable by common 
drug screens (114). Several of these compounds became avail-
able through local head shop and internet resources in the early 
to mid-2000s (Figure 1), and in 2004, a wide variety of products 
marketed as “legal” smoking blends began gaining popularity 
worldwide. “Spice” and “K2” represent two of the more popular 
brand names that became widely available in the United States 
(Figure 4). They are commonly ingested by smoking, although 
these products are typically labeled as “incense” and “not for 
human consumption” or “for aromatherapy only.” Recent forensic 
determinations in Europe and the United States found that many 
of these herbal products are laced with HU-210, JWH-018, JWH-
073, CP-47,497, and (C8)-CP-47,497 (102, 115–120). Derivatives, 
such as JWH-015, that show selectivity for CB2Rs have not been 
detected in these herbal products, which supports the notion that 
these products are indeed intended for their psychoactive proper-
ties despite product labeling. 

Recognition of K2/Spice Intoxication  
and Clinical Implications

Of concern to clinicians and public health officials is the lack of 
clinical information related to the pharmacology of these com-
pounds in man. It is expected that increased potencies exhibited 
by many of these synthetic agonists will lead to longer durations 
of action and an increased likelihood of adverse effects. In addition 
to the active ingredients, the plant material used for manufactur-
ing (Table 2) (as well as varying product mixtures) may lead to 
other unexpected toxic outcomes (102). Existing clinical literature 
suggests that severe and life-threatening symptoms (Table 3) may 

Figure 4. An example of K2 packaging.
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occur in users that naïvely consider these products to be “mari-
juana substitutes” (121–124). 

Unlike the low efficacy partial agonist effects of ∆9-THC,  
several of the AAIs used to produce these products are character-
ized as full agonists with increased potency. To date, two deaths 
have been reported in the United States with K2 product use. One 
involved an adolescent who committed suicide after experiencing 
extreme anxiety following use of these compounds (125). The sec-
ond involved an adolescent who died following a coronary ischemic 
event (126). Although suicidal tendencies have been associated with 
the use of CB1 antagonists (e.g., rimonabant), additional data are 

needed to elucidate the mechanisms for clinical toxicity in humans. 
The lack of a definitive diagnostic test for K2 compounds also  
hinders the recognition and appropriate medical treatment of  
side effects from these products. It is anticipated that reportable 
injuries and deaths will significantly increase as detection, and thus 
recognition, improve. 

Need for Regulation of K2/Spice Compounds

Very little regulation controlling the manufacture, distribution,  
and use of K2 products existed when these products emerged in 
the United States. One of the more potent derivatives, HU-210, 
was listed as a Schedule I substance when authorities discov-
ered its use. CP and JWH compounds did not fall under existing 
regulations because of their structural dissimilarity with ∆9-THC 
(Figure 3). Several European countries first began regulating these 
products in 2009 (102), while United States regulations started 
in early 2010 (Figure 1). Kansas, Kentucky, Missouri, Georgia, 
Alabama, and Arkansas were among some of the first states to take 
legislative action through state and local statutes and rules. Several 
other states, local municipalities, and the United States Armed 
Forces have also adopted similar regulations banning these sub-
stances. Pursuant to the temporary scheduling provisions under 
21 U.S.C. 811(h) of the Controlled Substances Act, the United 
States Drug Enforcement Agency has initiated the process for 
scheduling JWH-018, JWH-073, JWH-200, CP-47,497, and (C8)-
CP47,497 as Schedule I substances.

Detection and Monitoring of K2/Spice Compounds

The renewed interest in synthetic cannabinoids and their increased 
use as designer drugs raises significant public health concerns. 
Basic and clinical research is needed to address these concerns. A 
definitive diagnostic is needed to help associate clinical symptoms 
with specific drug use and to help serve as a deterrent for users 
seeking to avoid detection. Additional testing for other drugs of 
abuse will help to delineate K2 specific symptoms from those 
associated with the use of other illicit drugs. Understanding the 
clinical pharmacology of these substances will allow scientists to 
discern the relative toxicity associated with varying synthetic can-
nabinoid mixtures and routes of administration. This information 
is vital for the future education of communities, physicians, and 
lawmakers as they work together to protect public health. 

Conclusions

Beneficial Therapeutics or  
Designer Drugs of Abuse?

Although marijuana has been used (and abused) for centuries, 
the discovery that ∆9-THC activates CB1Rs resulted in a relatively 
recent push for development of CB1R agonists and antagonists for 

Table 2. Plants Commonly Used to Produce  
Herbal Products Laced with Cannabinoids 

Common Name Species

Beach bean Canavalia maritime or C. rosea

White Water lily and 
Blue Water Lily

Nymphaea alba and  
N. caerulea

Dwarf Skullcap Scutellaria nana

Indian Warrior Pedicularis densiflora

Lion’s Ear, Lion’s Tail, or  
Wild Dagga

Leonotis leonuru

Maconha Brava Zornia latifolia or Z.diphylla

Blue Sacred Lotus Nelumbo nucifera

Honeyweed or  
Siberian Motherwort

Leonurus sibiricus

Marshmallow Althaea officinalis

Dog Rose or Rosehip Rosa canina

Based on (96).

Table 3. Adverse Clinical Effects  
Reported with Use of K2 Products

Central Nervous System

Seizures
Agitation
Irritation
Loss of Consciousness
Anxiety
Confusion
Paranoia

Cardiovascular

Tachycardia
Hypertension
Chest Pain
Cardiac Ischemia

Metabolic
Hypokalemia
Hyperglycemia

Gastrointestinal Nausea
Vomiting

Autonomic
Fever
Mydriasis

Other Conjunctivitis
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clinical use. Unfortunately, therapeutic doses of both CB1R agonists 
and antagonists produce unacceptable psychiatric effects, severely 
limiting future drug discovery. Several strategies to mitigate these 
side effects are being investigated, including development of CB1R 
ligands with restricted CNS access, identifying allosteric modula-
tors of CB1Rs, indirect enhancement of CB1R activity by blocking 
endocannabinoid breakdown, and use of neutral CB1 antagonists.

Concurrent with attempts to produce highly selective and 
potent CB1R ligands for improved therapeutic use, a novel class of 
drugs of abuse emerged known as K2 or Spice. These drugs pro-
duce psychotropic actions via CB1R activation; however, because of 
their structural dissimilarity to ∆9-THC and inconsistent regulation, 
they are touted as “legal” forms of marijuana. Importantly, owing 
to unique adverse effects relative to ∆9-THC, users experimenting 
with K2 products are exposed to drugs that are extremely variable 
in both composition and potency, and they often develop serious 
adverse effects. Thus, an understanding of the clinical pharmacol-
ogy of these substances is needed to allow scientists to discern 
their relative toxicity. Further, this information is vital for the future 
education of communities, physicians, and lawmakers as they work 
together to protect public health.

Several hurdles remain for developing selective CB1R ligands 
with tolerable adverse effects in patients. Complicating matters 
further is the recent discovery that several experimental com-
pounds are being used as designer drugs capable of avoiding 
detection and regulation. Although there are significant public 
health problems associated with any drug of abuse, the informa-
tion reviewed here indicates that the potential therapeutic benefits 
of cannabinoids outweigh the negative aspects. Therefore, we 
conclude that marijuana-based drugs are indeed worthy of future 
study and characterization, in order to rigorously investigate their 
pharmacodynamic and potential clinical effects.   
doi:10.1124/mi.11.1.6
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