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T
he serotonin transporter (SERT) on platelets is a primary mechanism for serotonin (5HT) uptake from the 

blood plasma. Alteration in plasma 5HT level is associated with a number of cardiovascular diseases and 

disorders. Therefore, the regulation of the transporter’s activity represents a key mechanism to stabilize the 

concentration of plasma 5HT. There is a biphasic relationship between plasma 5HT elevation, loss of surface 

SERT, and depletion of platelet 5HT. Specifically, in platelets, plasma membrane SERT levels and platelet 5HT 

uptake initially rise as plasma 5HT levels are increased but then fall below normal as the plasma 5HT level 

continues to rise. Therefore, we propose that elevated plasma 5HT limits its own uptake in platelets by down-

regulating SERT as well as modifying the characteristics of SERT partners in the membrane trafficking pathway. 

This review will summarize current findings regarding the biochemical mechanisms by which elevated 5HT 

downregulates the expression of SERT on the platelet membrane. Intriguing aspects of this regulation include the 

intracellular interplay of SERT with the small G protein Rab4 and the concerted 5HT-mediated phosphorylation  

of vimentin. 
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Introduction 

Serotonin [i.e., 5-hydroxytryptamine (5HT)], an intermediate 
product of tryptophan metabolism, is primarily located in the 
enterochromaffin cells of the intestine, the serotoninergic neurons 
of the brain, and platelets of the blood. 5HT is well-established as 
a neurotransmitter in the central nervous system (1–4), but it also 
plays diverse roles in the cardiovascular system, including platelet 
aggregation and regulation of vascular tone (4, 5). 5HT was dis-
covered by Rapport in 1942 and was isolated from beef serum and 
named “serotonin” for its vasoconstrictor effect (6). Cardiovascular 
diseases, including coronary artery disease, atherothrombosis, 
cerebrovascular ischemia, and myocardial infarction, have been 
linked to elevated plasma 5HT levels (7–14). 

The origins of disease-related elevations in plasma 5HT  
levels, although controversial, may reflect increased rates of 5HT 
secretion from enterochromaffin cells of the intestine, which  
house the majority of the body’s 5HT. But an investigation into  
the elevation of 5HT levels in the plasma and its relationship 
to cardiovascular disease—which is our focus here—primarily 
demands an exploration into platelet biology. 

The Serotonin Transporter and  
Platelet Function 

The uptake of 5HT from the plasma and into platelets occurs rapid-
ly, by a saturable mechanism, which makes platelets the fundamental 

regulators of plasma 5HT concentration. Platelet uptake of 5HT 
from the plasma is dependent on the serotonin transporter [(SERT); 
see Figure 1], commonly regarded for its function in neurotransmit-
ter reuptake in the central nervous system but also essential to the 
platelet plasma membrane. After 5HT is transported by SERT across 
the platelet plasma membrane, it is either sequestered into dense 
granules by vesicular monoamine transporters (VMAT) or degraded 
by monoamine oxidase. 

SERT is a member of the Na+/Cl–-dependent solute carrier 
6 (SLC6) family, which includes transporters of norepinephrine, 
dopamine, γ-aminobutyric acid, glycine, proline, creatine, and 
betaine (15). The detailed mechanism by which SERT activity 
depends upon transmembrane ion gradients is still not under-
stood; however, the X-ray crystal structure of LeuT, a prokaryotic 
amino acid transporter and homolog of mammalian neurotrans-
mitter transporters, has significantly elevated our understanding  
of SERT (16). 

A number of groups have attempted to purify SERT to homo-
geneity, and the protein has been solubilized, through the use of 
digitonin, in an active form (17–19). Citalopram, a high-affinity 
ligand for SERT, has been successfully used to create affinity resins 
and achieve significant purification of the transporter solubilized 
from platelets and brain tissues (17–19). SERT-encoding cDNA has 
been isolated (20–22) and sequenced from a number of sources, 
including human placenta (22), platelets (23), and brain (24); 
sequences have also been studied from rat (20, 21) and mouse 
brain (25) and Drosophila (26, 27). The available SERT sequence 
data show twelve hydrophobic spans connected by hydrophilic 
loops; both the N and C termini appear to be cytoplasmic (Figure 
2). The 630-residue SERT is largely hydrophobic, typifying an 
integral membrane protein (28). Whereas homo-oligomerization is 
a common characteristic of transporters for biogenic amine neu-
rotransmitters (29), hetero-oligomeric associations do not appear 
to be functionally relevant (30).

The functional roles of the sialylated N-glycans moieties of 
SERT have been investigated through mutational analysis. Results 
of these studies indicate that sialylated glycans modifications are 
required for homomeric SERT–SERT interactions and are also 
involved in interactions between SERT and myosin IIa (31).  
This latter interaction is relevant in the phosphorylation of SERT; 
SERT is phosphorylated by a cyclic guanosine monophosphate-
(cGMP)-dependent protein kinase (PKG) that is anchored at the 
plasma membrane by myosin. The oligosaccharide chains are also 
essential to this interaction as well as to the cGMP-dependent  
stimulation of SERT function. Because the N-glycosylation and 
myosin-association domains are located at opposite sides of the 
plasma membrane, we have hypothesized that the glycosyl modifi-
cation of the extracellular domain imparts favorable conformational 
effects to the integral protein and allows SERT to participate in 
functional protein–protein interactions within the cytoplasm (31).

Figure 1. The role of 5HT in platelet function. SERT (dark blue elongated 
hexagons) within the plasma membrane (light blue line) transports 5HT, 
which is a signal for platelet activation, from the plasma into the platelet cyto-
plasm. 5HT is stored within the platelet in dense granules; α-granules store 
proagulant molecules. Both types of granules can release their contents into 
the plasma under appropriate platelet stimulation. The internalization and 
recycling of SERT through platelet trafficking machinery provides a means of 
regulating 5HT uptake. (See text for details.)
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Biphasic Relationship Between 5HT 
Concentration and Sert Activity

It comes as no surprise that the capacity of platelets and cells to 
take up 5HT is generally proportional to the number of SERT 
molecules located in the plasma membrane. But intriguingly, the 
surface expression of SERT molecules on neurons and glial cells 
is regulated by the concentration of extracellular 5HT (32, 33). 
For these cells, the elevation of extracellular 5HT levels functions 
to decrease the surface expression of transporters, thereby limit-
ing their synaptic availability; this change in surface expression is 
mediated by changes in the trafficking dynamics of SERT (33–36).

The impact of plasma 5HT concentration on the surface 
expression of SERT in the platelet plasma membrane has been 
recognized; however, the nature of this regulation, which is both 
subtle and complex, is only beginning to come to light in the lit-
erature. It is clear that the treatment of platelets with 5HT affects 
the density of SERT molecules in the plasma membrane (36).  
Recently, by analyzing the impact of 5HT, at various concentra-
tions (0-2.5 nM), on platelet SERT, we have found that the  
relationship between the surface expression of SERT in  
platelets and concentration of 5HT exposure is biphasic (37-39). 
Specifically, plasma membrane SERT levels and 5HT uptake  
initially rise as platelets are exposed to increasing 5HT levels,  

but this initial response is followed by a second phase, whereby 
higher concentrations of 5HT cause SERT levels to fall below 
baseline. In vivo and in vitro, these studies have confirmed the 
interrelationships among extracellular 5HT concentration, surface 
expression SERT, and depletion of platelet 5HT to be strikingly 
dynamic. Rats (40) and mice (41) deficient in SERT have also 
helped to elucidate the relationships among platelet SERT expres-
sion, circulating 5HT levels in plasma, and the contribution of 
these influences to platelet physiology. For example, platelets from 
SERT knockout rodents are almost completely devoid of 5HT. 
Nevertheless, knockout models do not provide an opportunity  
to investigate the effect of altered serotonin levels in the plasma 
upon the surface expression of SERT in platelets or concomitant 
physiological responses mediated by SERT.

Platelet SERT Dynamics: Implications for 
Regulation of Blood Pressure

Several lines of evidence demonstrate that plasma 5HT is directly 
related to systemic hypertension (37–39, 42–48); its potent vaso-
constrictor activity is synergistic with that of epinephrine (49), 
and certain 5HT antagonists may lower blood pressure (50). 
Furthermore, hypertension is a salient manifestation of 5HT 
excess, as reflected in carcinoid syndrome (51) and serotonin 
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Figure 2. SERT integration into the platelet plasma membrane. Twelve intramembrane domains are predicted for SERT. Sites of glycosylation are indicated 
at extracellular asparagine residues. The cytoplasmic C-terminal domain contains important regulatory sequences. The SITPET hexapeptide (red residues) 
is key to SERT trafficking and regulation, putatively providing sites for sequential phosphorylation and interaction with cytoskeletal elements (e.g., vimentin). 
Residues indicated in green have been implicated in the binding of Rab 4. (See text for details.)
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syndrome (52). In patients with uncontrolled hypertension, the 
uptake of 5HT by platelets was significantly impaired as compared 
to platelets examined after hypertension was controlled (53). 
Further studies have demonstrated that transcriptional regulation 
of SERT expression as well as SERT inhibitors (54–58) alter the 
plasma level of 5HT and induce the development of hypertension. 
The involvement of SERT in the development of hypertension is 
additionally of great medical interest, because SERT represents the 
target of many clinically important drugs such as cocaine, amphet-
amine, and antidepressants. Regulation of the transporter’s activity 
could constitute an important mechanism for the control of  
neurotransmitter action during hypertension.

Blood plasma and platelets isolated from hypertensive indi-
viduals are thus of interest in studying the impact of high plasma 
5HT concentration on platelet SERT. For example, we have col-
lected blood samples from adult men presenting for emergency 
care with high blood pressure (trauma- or stress-associated hyper-
tension), and we have analyzed platelet SERT from these patients 
during and subsequent to symptom presentation (37). We found 
the plasma concentration of 5HT to be as high as 2 nM from 
admitting patients and approximately 0.7-1.0 nM after hyper-
tension subsided. Moreover, the 5HT uptake rates that typified 
hypertensive platelets were low relative to platelets collected under 
normotensive conditions, and this lower rate of uptake reflected 
a decrease in Vmax, without any significant effect upon the Km 
for 5HT. The effect on Vmax reflected a decrease in the density 
of SERT on the platelet membrane, with no change in whole cell 
expression. Additionally, the concentration of 5HT within platelets 
collected under hypertensive conditions was 33% lower, rela-
tive to normotensive platelets, whereas the hypertensive plasma 
concentration of 5HT was increased by 33% (37). Pretreatment of 
the platelets isolated from normotensive blood samples with 5HT, 
however, results in the lower level of SERT molecules that typified 
platelets isolated under hypertensive conditions. 

The 5HT uptake rate of 5HT-pretreated platelets is intriguing. 
5HT uptake initially rises as plasma 5HT concentration increases 
but then falls below normal at higher 5HT concentrations (37, 
44, 45). Thus, the surface expression of SERT on platelets may be 
uniquely altered in response to plasma 5HT levels, which in turn 
changes platelet 5HT content. The decreased surface expression 
of platelet SERT in the presence of high 5HT concentrations in 
plasma may function under hypertensive conditions to delimit 
5HT uptake, thereby providing a feedback effect. In addition, we 
found that platelets aggregate more readily following pretreatment 
with the higher concentration (2 nM) of 5HT. 

These observations may seem counterintuitive. When extra-
cellular 5HT concentration is increased, the level of SERT on the 
plasma membrane might well be expected to increase, in order to 
promote 5HT uptake from plasma. However, the impact of a sub-
strate on the surface expression of the family of Na/Cl-dependent 
monoamine transporters may resemble the effect of a ligand on 
the activity of G protein–coupled receptors, whereby ligand bind-

ing can initiate not only signal transduction but also endocytosis. 
Internalization, recycling, and trafficking of receptor tyrosine 
kinases within the endosome compartment are each regulated to 
control the overall process of downregulation. For example, the 
action of brain-derived neurotrophic factor through its receptor 
has been reported to play critical roles in survival, differentiation, 
and synaptic activity of neurons (58); Rap2, a member of the Ras 
GTPase family, modulates the trafficking of receptors for Activin/
Nodal and thereby regulates signaling activity. In the absence of 
ligand, Rap2 directs internalized Activin/Nodal receptors into 
a recycling pathway, thereby preventing receptor degradation. 
However, after ligand activation, receptor recycling by Rap2 is 
terminated (59). The targeting of SERT by therapeutic agents that 
enhance serotoninergic signaling (e.g., serotonin-selective reuptake 
inhibitors) and by drugs of abuse [e.g., cocaine and MDMA (i.e., 
ectasy)] (60, 61) is known to include effects on recycling and 
internalization of SERT (33). Substrate-mediated modulation of 
transporter trafficking and surface functionality is also exempli-
fied by the increased surface expression of the excitatory amino 
acid transporter (EAAT1) in response to glutamate, as well as the 
GABA-mediated increase in glutamine transporter 1 (GAT1) activ-
ity (62–64). Similarly, the surface expression and activity of the 
dopamine transporter (DAT) is enhanced by dopamine, amphet-
amine, and cocaine (65).

As is the case for many membrane proteins, SERT trafficking 
is mediated by vesicular packing and interactions with specialized 
proteins. Depending on many factors, such as substrate avail-
ability, inhibitors, and interacting proteins, SERT-carrying small 
vesicles will either reside in the platelet cytoplasm or translocate to 
the plasma membrane. Upon clearance of 5HT from the extracel-
lular matrix into the cytoplasm of platelets, SERT moves from the 
plasma membrane and becomes sequestered in small vesicles that 
may be routed elsewhere. In platelets, the biosynthesis as well as 
the posttranslational modifications of proteins is minimal. These 
features make platelets a unique system for evaluating factors 
that play roles in membrane trafficking, crucial to our attempts to 
understand the plasma level 5HT–dependence of SERT recycling. 

The N- and C-terminal sequences of monoamine transport-
ers have been studied extensively within the context of transport 
function and localization. The C-terminal region of DAT and NET 
is very important for transporter function, expression, and local-
ization (66–69). Syntaxin 1A (62, 70), secretory carrier membrane 
protein 2 (63, 71), Hic-5 (36), and α-synuclein (72), are among the 
factors that interact with SERT and regulate the translocation of 
transporter among the cytoplasmic compartments. Furthermore, 
several proteins have been identified in association with the C  
terminus of SERT: PICK1 (73–75), the actin cytoskeleton (76), 
neuronal nitric oxide synthase, Sec23A, Sec24C (73), and  
fibrinogen, an activator of integrin αIIbβ3 (77). 

SERT activity, trafficking, and phosphorylation can also be 
modulated through C-terminal interaction with a member of the 
MARCKS family of protein kinase C substrates (78). PKC-mediated 



235
 August 2010

Volume 10, Issue 4

SERT in Platelets

phosphorylation of SERT has been correlated with extracellular 
5HT levels (36, 39, 79), and the twenty-residue C terminal pep-
tide sequence of SERT is critical for the functional expression of 
the transporter (39, 80). Importantly, Whitworth and colleagues 
demonstrated that 5HT-mediated signals have a role in regulating 
the number of transporters at or near the synapse by changing the 
subcellular redistribution of SERT in neurons and glia (81). These 
and other studies confirm the regulatory and functional signifi-
cance of transporter trafficking, internalization, and recycling  
(22, 37–39, 71, 82). It should be noted that the posttranslational 
modification of SERT (e.g., glycosylation) also regulates transport-
er function (81), but given that glycosylation occurs in  

megakaryocytes (i.e., the progenitors of platelets), this aspect of 
SERT regulation may not be altered in platelets. 

5HT-Mediated RAB4–SERT Interaction

At high cytoplasmic concentration (12 µM), 5HT accelerates the 
exocytosis of α-granules by causing the serotonylation and con-
comitant constitutive activation of small GTPases, such as Rho and 
Rab4 (83–88). There are more than sixty members in the mamma-
lian Rab protein family, and individual Rab proteins are localized to 
the cytoplasmic leaflet of distinct compartments in both the endo-
cytotic and exocytotic pathways (89). These proteins are similar in 
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Figure 3. SERT-mediated 5HT uptake: reciprocal regulation of plasma 5HT levels and SERT activity in the platelet plasma membrane. Upon elevation 
of 5HT concentration (yellow squares) in the plasma (upper right arrow), the uptake rate of 5HT increases, as trafficking vesicles (green circles; see [A] and [B]) 
deliver SERT (blue geometries) to the platelet surface. The rise in cytoplasmic 5HT [B] promotes the transamination of Rab4 (not schematized), thereby activat-
ing Rab4 and promoting its association with SERT; the Rab4–SERT interaction prevents the trafficking of SERT to the plasma membrane [C]. The rise in cyto-
plasmic 5HT also promotes exocytosis of dense granules (purple circles) and α-granules (green ovals), the latter of which contain procoagulants (hexagons). 
The internalization of SERT is also promoted as 5HT activates PAK, which phosphorylates vimentin (see [C] and [D]), causing its association with SERT. The 
indicated roles of Rab4 and vimentin culminate in the reduced surface expression of SERT, which delimits further intake of 5HT, restoring cytoplasmic levels to 
their initial values (see [D] and [A]). (See text for details.)
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mass and sequence to the yeast YPT1 and SEC4 proteins, which 
have important functions in endocytosis and exocytosis. Rab4 is 
associated with early endosomes and regulates membrane recycling 
(89–91). In adipocytes, Rab4 controls recycling of the insulin-
regulated glucose transporter GLUT4 (92), and recombinant Rab4 
stimulates secretion of α-granules in platelets (83, 84). 

Platelets contain high levels of a Ca2+-dependent transglutam-
inase that catalyzes a transamidation reaction between 5HT and 
small GTPases, including Rab4 (i.e., resulting in the serotonylation 
of Rab4) (83, 84). In response to elevations in plasma 5HT, the 
platelet phosphatidylinositol pathway is activated, which increases 
intracellular Ca2+ levels and thereby activates the transglutaminase. 
In this way, elevations of 5HT concentration in the plasma results 
in the serotonylation of Rab4 within its phosphate binding domain 
(83, 84). Interestingly, the analogous serotonylation of Rho results 
in constitutive activation (93).

We have examined the association of Rab4 and SERT in a 
heterologous expression system and platelets. In both systems, 
Rab4 and SERT can be seen (i.e., by coimmunoprecipitation and 
immunofluorescence) to associate only in the presence of high 
plasma 5HT (38). More specifically, we found that a C-terminal 
sequence of SERT, between T616 and D624, was necessary for the 
interaction with Rab4. Using variants of Rab4 that were either 
constitutively active or unable to bind nucleotides, we furthermore 
found that SERT can only associate with the active form of Rab4 
(Rab4·GTP), which occurs after the serotonylation of Rab4 (83, 
84). However, a constitutively active form of Rab4 was able to 
bind SERT in the absence of 5HT. Therefore, these findings may 
indicate the importance of activation of Rab4 independent of 5HT 
level, as elevated 5HT is but one of the many other factors that 
can activate Rab proteins. In light of these data, we hypothesize 
that at high concentrations of 5HT in the blood plasma, 5HT is 
taken up by platelets at rates that saturate the VMAT capacity of 
dense granules; the saturation of VMAT results in its inactivation 
through a G protein–dependent mechanism (94–96). At the same 
time, the concomitant high level of cytoplasmic 5HT would result 
in the serotonylation and activation of Rab4, thereby promoting 
the association between cytoplasmic SERT and Rab4·GTP. In this 
way, the trafficking of SERT to the plasma membrane would be 
impeded, and the concomitant reduction in surface expression of 
platelet SERT would reduce the uptake of 5HT from the plasma 
(Figure 3). 

Plasma 5HT and Vimentin

Vimentin is a type III intermediate filament involved in cyto-
plasmic trafficking in cells of mesenchymal (e.g., endothelium, 
fibroblasts, megakaryocytes) and myogenic origin (97). It is a 
minor component of the platelet cytoskeleton (98) and resolves 
to the Triton X-100 insoluble fraction of human platelets (99, 
100). Vimentin participates in a network of intermediate filaments 
that extends beneath the cell membrane and regulates the activ-

ity of the p21-activating kinase (PAK), which functions in the 
transduction of diverse extracelleular signals to alter intracellular 
pathways (101). Significantly, vimentin is a substrate of PAK, and 
PAK becomes activated in cells that are exposed to 5HT (101). 
Following phosphorylation at Ser56, the curved filamentous struc-
ture of vimentin undergoes reorganization and straightens (100). 

Given its role in the trafficking of proteins, we became  
interested in vimentin as a possible mediator in the effect of 
5HT concentration upon surface expression of SERT. At physi-
ological plasma 5HT levels, the vimentin–SERT association was 
found at intracellular locations as well as the plasma membrane 
(45). However, when plasma 5HT concentration was higher than 
physiological levels, the association between SERT and vimentin 
was enhanced, corresponding to an altered vimentin network. To 
investigate whether this association is related with the phosphory-
lation and the reorganization of vimentin filaments, immunofluo-
rescence of cells expressing SERT was performed before and after 
5HT pretreatment (45). This approach clearly illustrated that the 
filamentous structure of vimentin was straightened, following 5HT 
pretreatment, in concert with the enhancement of phosphovi-
mentin-SERT association. Moreover, SERT tagged by extracellular 
biotin and isolated from the platelet plasma membrane is associ-
ated with vimentin, suggesting that SERT bridges vimentin to the 
plasma membrane (45). When the extracellular 5HT level is elevat-
ed, PAK is activated and phosphorylates vimentin, which enhances 
the association between phosphovimentin and the cytoplasmic 
domain of SERT at the plasma membrane, which leads to reduced 
density of SERT molecules on the plasma membrane and thereby 
reduces 5HT uptake (45). Accordingly, in cells overexpressing 
the S56A mutant form of vimentin (lacking the phosphorylation 
site), 5HT uptake rates of cells are normalized even in the pres-
ence of elevated plasma 5HT levels (45). Thus, under conditions 
where the blood plasma 5HT level is high, as it is in hypertension, 
reduced surface expression of platelet SERT [i.e., the basis for the 
reduction in the Vmax for 5HT uptake (37)] can be linked to PAK 
signaling and phosphorylation of the vimentin framework.

Indeed, we have determined that the C terminus of SERT 
is required for binding to vimentin (45). Progressive truncation 
of the SERT C terminus maps an essential domain for the bind-
ing of vimentin to between residues 611 and 616 (i.e., a SITPET 
sequence; see Figure 2). If this sequence is removed (i.e., a dele-
tion of the twenty residues at the SERT C terminus), the protein 
is not delivered to the plasma membrane and remains localized in 
the cytoplasm; if the hexapeptide (i.e., SITPET) is retained as the 
C terminus (i.e., deletion of fourteen residues relative to the wild-
type protein), the resulting construct does not alter 5HT uptake 
rates, but its association with vimentin is precluded.

A series of site-directed mutations has provided intriguing 
glimpses into possible basis for the SERT–vimentin interaction and 
the 5HT-mediated regulation of SERT expression at the platelet 
surface. The serine and two threonine residues in the essential 
(vimentin-binding) C-terminal SITPET sequence (see Figure 2), 
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given the regulation of SERT by phosphorylation, have been  
substituted by alanine (thereby removing potential sites of  
phosphorylation) and aspartate (thereby providing an irreversible  
negative charge that could possibly mimic the effect of a phos-
phate group). Replacement of the three residues with alanine, 
either simultaneously (i.e., the triple mutation) or one at a time, 
has no significant effect on 5HT transport activity, vimentin bind-
ing, or cellular trafficking of SERT. In contrast, a triple mutation 
that substitutes aspartate residues for the serine and threonine 
residues within the SITPET sequence prevents the trafficking of 
the transporter to the plasma membrane and causes SERT to accu-
mulate at intracellular locations. The accumulation of negative 
charge at the C terminus of SERT, which would by supposition 
occur upon phosphorylation of three residues within the SITPET 
sequence, can be mechanistically related to the reduced surface 
expression and transport activity of SERT in response to high  
concentration of 5HT in the plasma.

Additionally, the stepwise mutation of each of the serine 
and threonine residues within the SITPET sequence proves to 
be relevant to the finer aspects of SERT regulation. Specifically, 
the phosphorylation of SERT has been suggested to occur in a 
two-step process (102), according to which the serine residue is 
first phosphorylated, thereby inactivating 5HT transport. In the 
second step, phosphorylation of the threonine residues has been 
suggested to result in the internalization of SERT. In regard to this 
two-step hypothesis of phosphorylation functionality, we have 
found that single mutation of the SITPET serine residue to aspar-
tate reduces transport capacity and SERT surface density by ~39%, 
with concomitant accumulation of SERT in the cytoplasm (45). 
SERT binding to vimentin is also particularly sensitive to this  
particular mutation in SERT.

The double mutation that substitutes aspartic acid in place 
of both threonine residues within the SITPET sequence, on the 
other hand, reduces uptake capacity to ~16% of the wild-type rate 
(45). The mutational data thus indicate additive effects of placing 
negative charges within the SITPET sequence (to mimic phospho-
rylation), and we might hypothesize that step-wise phosphoryla-
tion sequentially exposes the vimentin-binding domain (i.e., the 
SITPET sequence) on the C terminus of SERT (45). Our muta-
tional analysis, however, indicating the localization of the Ser611D 
mutant protein in the cytoplasm, is at odds with the original  
two-step model.

Conclusion

SERT has a rich history in pharmacology and has been translated 
into a widely exploited therapeutic target. New insights into the 
regulation of SERT function and surface expression in platelets 
may open new dimensions in the targeting of SERT. We have 
focused here on the regulation of platelet SERT by extracellular 
5HT and the relevance of this regulation in hypertension.

Transamination of Rab4 with 5HT places this small GTPase 
into a constitutively active form that accelerates the exocytosis of 
α-granules to secrete procoagulants into the plasma (83, 84), binds 
SERT to block its translocation to the plasma membrane (44), and 
thereby limits 5HT uptake by platelets. This process may thus 
contribute to elevated plasma concentrations of 5HT and appears 
to activate PAK-dependent pathways. Among these pathways, 
and one that is experimentally implicated in regulation of SERT 
by plasma 5HT, is the phosphorylation of vimentin, a modifica-
tion that uncurls the filamentous structure of vimentin, enhances 
vimentin–SERT association, and accelerates the internalization of 
SERT from the plasma membrane (45).

Finally, excess 5HT in the plasma may enhance platelet aggre-
gation induced by other endogenous substances; however, even 
at the highest levels of plasma 5HT, there are always a number 
of SERT molecules on the platelet membrane that still continue 
to clear plasma 5HT, albeit at a reduced rate that is presumably 
maintained as long as the plasma 5HT concentration remains high 
(37). Thus, a highly dynamic relationship appears to exist between 
plasma 5HT concentration and SERT trafficking that may be capa-
ble of influencing platelet function. 

Platelets are derived from the cytoplasm of megakaryocytes 
and enter the circulatory system in an inactive form. An initial 
activation of platelets stabilizes them in hemostasis. Further acti-
vation and aggregation at fibrin-stabilized hemostatic areas can 
elaborate into thrombosis, which is a leading cause of death for 
patients with hypertension and cardiovascular disease. Although 
5HT as a therapeutic target is widely recognized in the context of 
the central nervous system, it is also well established in amplifying 
platelet activation; once cytoplasmic calcium levels are elevated, 
the exocytosis of dense granules releases 5HT into the plasma (83, 
84). Indeed, in the absence of peripheral 5HT, platelets exhibit a 
blunted secretion of α-granules and a reduced risk of thrombosis. 
Conversely, the exocytosis of α-granules is accelerated in the pres-
ence of elevated plasma 5HT levels (83, 84) and by concurrent 
activation of platelets (4, 48, 103-104). However, neither the pre-
cise role of 5HT as a signaling molecule in the activation of plate-
lets nor the mechanisms by which 5HT mediates aggregation is yet 
known. Furthermore, the involvement of SERT in the activation of 
platelets has not been sufficiently studied in vivo.

Considering the role of 5HT in platelet aggregation, a loss 
of platelet SERT coupled with elevated plasma 5HT may play a 
significant role in the cluster of cardiovascular diseases, includ-
ing diabetes, metabolic syndrome, atherosclerosis, and peripheral 
arterial disease, which are thought to reflect a prothrombotic state. 
Numerous factors have been identified that confer susceptibility 
to thrombosis, including a loss of endothelial-derived nitric oxide, 
vascular smooth muscle cell hypertrophy, hyperinsulinemia and 
other metabolic abnormalities, obesity, and inflammation (1, 4, 84, 
48, 103-104). The development of possible antithrombotic thera-
pies for patients with cardiovascular disease has focused on reduc-
ing these risk factors rather than on promoting endogenous mech-



238

Review

anisms of anti-thrombosis. In this regard, therapies designed to 
promote the expression of SERT on the platelet surface and there-
by reduce plasma levels of 5HT may represent a novel approach to 
alleviating thrombotic events.  doi:10.1124/mi.10.4.6
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