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Abstract  In aerospace engineering and industry .
control tasks are often of a periodic nature, while
repetitive control is especially suitable for tracking
and rejection of periodic exogenous signals. Be-
cause of limited research effort on nonlinear sys-
tems ., we give a survey of repetitive control for non-
linear systems in this paper. First, a brief introduc-
tion of repetitive control is presented. Then, after
giving a brief overview of repetitive control for linear
systems, this paper summarizes design methods
and existing problems of repetitive control for nonlin-
ear systems in detail. Lastly. relationships be-
tween repetitive control and other control schemes
are analyzed to recognize repetitive control from dif-
ferent aspects more insightfully .
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I . Introduction

In nature, numerous examples of periodic
phenomenons are found and observed, ranging
from the orbital motion of the heavenly bodies to
the rhythm of the heart. In aerospace engineering,
many control tasks are often of a periodic nature as
well. For example: magnetic spacecraft attitude
control [17],[ 2], active control of vibrations in
helicopters [ 3],[ 4], autonomous vertical landing
on an oscillating platform [5],[ 6] and harmonics
elimination in aircraft power supplies [ 7]. Besides
these, in industrial manipulators executing opera-
tions of picking, placing or painting, machine tools
and magnetic disk or CD drives, the control sys-
tems are often required to track or reject periodic
exogenous signals. For these periodic control
tasks, repetitive control (RC, or repetitive con-

troller, also designated RC) often can achieve a

control performance with a high precision.

RC is an internal-model-based control ap-
proach in which the infinite-dimensional internal
model 1/(1—e 7). gives rise to an infinite num-
ber of poles on the imaginary axis. The basic idea
of RC is the cancelation viewpoint on the internal
model principle (IMP) [8],[9]. RC was initially
developed for continuous single-input, single-out-
put linear time-invariant systems in [ 10], for high
accuracy tracking of a periodic signal with a known
period. Later, RC was extended to multiple-input
multiple-output ( MIMO ) linear time-invariant
(LTD systems in [ 9]. Since then, RC has begun
to receive more attention and applications, and has
become a special topic in control theory. In recent
years, the development on RC has been uneven.
By the use of frequency methods, the theories and
applications in LTI systems have developed very
well. On the other hand, RC for nonlinear systems
has received limited research effort. Taking these
into account, we will give a survey of RC for non-
linear systems in this paper.

The rest of this paper is organized as follows.
In Section II, a brief introduction of RC is presen-
ted. Then, a brief overview of RC for linear sys-
tems is given in Section III. In Section IV, design
methods and existing problems of RC for nonlinear
systems are summarized in detail. In Section V,
between RC and
schemes are analyzed. Conclusions are given in
Section V1.

relationships other control

I . Basic Idea of Repetitive Control

The basic idea of RC stems from the IMP.
The IMP states that if any exogenous signal can be
regarded as the output of an autonomous system,
then the inclusion of this signal model, namely in-

ternal model, in a stable closed-loop system can as-
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sure asymptotic tracking and/or asymptotic rejec-
tion of the signal [8]. In order to achieve asymp-
totic tracking and/or asymptotic rejection, if a giv-
en signal is composed of a certain number of har-
monics, then a corresponding number of neutrally
stable internal models (one for each harmonic)
should be incorporated into the closed loop accord-
ing to the IMP. Integral control is a typical appli-
cation. It is well known that integral control can
track and reject any step external signal. This can
be explained by the IMP as the models of an inte-
grator and a step signal are the same. However,
according to the IMP, it will bring in trouble to
design a tracking controller for a general periodic
signal. First, harmonics of a general periodic sig-
nal need to be analyzed. It is difficult or may cost
much time to obtain accurate harmonics. Second,
the controller will contain more neutrally stable in-
ternal models (one for each harmonic) as the num-
ber of harmonics increases. This will lead the con-
troller structure too complex. Also, it will cost
much time to solve these neutrally stable internal
models (differential equations) to obtain the con-
trol output. The two drawbacks can be overcome
by using RC. The innovation of RC is to construct
the internal model for any T-periodic signal as fol-
lows [11]:
W 1 1
T 1—e T - T2\
sH (1 + m)

k=1

Iy (D

It can be observed that the internal model contains
internal models of all sinusoidal functions with T
period and the step signal. But, ironically, RC
with the infinite number of harmonics has a simple
structure! This confirms a Chinese proverb “things
will develop in the opposite direction when they
become extreme.” A controller including the inter-
nal model (1) is called a RC and a system with
such a controller is called a RC system [9].

In order to show IMP more explicitly, in the
following, the IMP is used to explain the role of
the internal models for step signals and T-periodic
signals, respectively.

A. Step Signals

Since the Laplace transformation model of a u-
nit step signal and an integralterm are the same,
namely 1/s, the inclusion of the model 1/s in a sta-
ble closed-loop system can assure asymptotic track-

ing and/or asymptotic rejection of the unit step sig-
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nal according to the IMP,.

Ya(8) + > € () v (s) y ()

Fig. 1

Step signal tracking

As shown in Fig. 1, the transfer function from

the desired signal to the tracking error is written as

follows:
1 1 1
e(s)= ————y,(s) = ——— (5 —
1_’_%(;(5) «s+(:(s)< s )
_
s+GGs)’

Then, it only requires to verify whether or not the
roots of the equation s+G(s) =0 are all in the left
s-plane, namely whether or not the closed-loop
system is stable. If all roots are in the left s-plane,
then the tracking error tends to zero as t— co,
Therefore, the tracking problem has been reduced
to a stabilization problem of the closed-loop sys-
tem.

B. T-periodic Signals

If the external signal is in the form of y,(z) =
v,(t—T), which can represent any periodic signal
with a period T, then asymptotic tracking and/or
asymptotic rejection can be achieved by incorpora-
ting the model 1/(1 —e 7). into the closed-loop

system.

Ya(8) + > € () v (s) y ()

—

Fig. 2 T-periodic signal tracking

Similarly, the transfer function from the de-

sired signal to the error is written as follows:

e(s)= 11 vq (s)
1+ﬁ(}($)
1 T 1
= - (1 — € ) D —
1—5J+Gui l—e”}
S S
l1—e " +G(s°

Then, it is only required to verify whether or
not the roots of the equation 1—e " +G(s) =0
are all in the left s-plane. Therefore, the tracking
problem has been reduced to a stabilization prob-

lem of the closed-loop system.
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IT. Brief Overview of RC for Linear Systems

RC is an internal-model-based control ap-
proach in which the infinite-dimensional internal
model 1/ (1—e ") gives rise to an infinite number
of poles on the imaginary axis. It was proved in
[9] that, for a class of general linear plants, expo-
nential stability of RC systems could be achieved
only when the plant is proper but not strictly prop-
er. Moreover, the internal model 1/(1—e T) may
destabilize the system. A linear RC system is a
neutral type system in a critical case [12],[13].
Consider the following simple RC system:

2(t) =— x2(t) +ult)
u(t) =ut—T) —x(0)

where 2(2),u(z) € R. The RC system above can
be also written to be a neutral type system in a
critical case as follows:

() — 2 —T) =—22() + 2 — ).

The system above is in fact a neutral type system
in a critical case [12],[13].

To enhance stability, a suitable filter is intro-
duced as shown in Fig. 3, forming a filtered repet-
itive controller (FRC, or filtered repetitive con-
trol , also designated FRC) in which the loop gain
is reduced at high frequencies' Stability results on-
ly with some sacrifice of high frequency perform-
ance. With appropriate design, however, an FRC
can often achieve an acceptable tradeoff between
tracking performance and stability, a tradeoff
which broadens the application of RC in practice.
The plug-in RC system shown in Fig. 3 is awidely
used structure. Under the structure, the design
objective is to design and optimize the filter Q(s)

and the compensator B(s).

Filtered Repetitive Controler
|

R (s)+ %E (st

Fig. 3 Plug-in RC system diagram

After the development in past 30 years, a

great deal of research effort has been devoted to
the theories and applications on RC for linear sys-
tems. About RC for linear systems, the interested
readers could consult [14],[15],[16],[17] and
references therein for the development. Currently,
the research mainly focuses on robust RC [18],
[197,[20],[21] and spatial-based RC [237]. Ro-
bust RC mainly includes two aspects: robustness
to stability of closed-loopsystems [18],[19],[20]
and robustness to uncertain or time-varying period-
time [ 21],[22]. The researchers attempt to design
better RCs to satisfy more and more practical vari-

ous requirements.
V. Repetitive Control for Nonlinear Systems

For nonlinear systems, it is not trivial to fol-
low the idea of FRC because the related theories
are derived in the frequency domain and can be ap-
plied only with difficulty, if at all, to nonlinear
systems. Currently, there exist two major ways to
design RCs for nonlinear systems.

A. Major Design Methods of RC

1) Linearization Approach: One way is to
transform a nonlinear system into a linear system,
then apply existing design methods to the trans-
formed linear system. In the early years, research-
ers often only consider the following nonlinear sys-

tem;

(1) = Ax(¢) + Bu () + ¢(x,t)
v(t) = Cx () + Du(t). (2)

This is related to the research of nonlinear systems
in the early years. The RC design often had to re-
strict on the nonlinear term ¢(x,¢), such as Lip-
schtsz conditions [ 24 ] or sector conditions [ 25 |—
[26]. Along with the appearance of feedback lin-
earization and backstepping, the RC design of non-
linear systems develops further. By these new
techniques, some nonlinear systems can be trans-
formed into the form of (2) with some restric-
tions. Some existing design methods can be used
directly.

Along with the appearance of feedback linear-
ization and backstepping, the RC design for nonlin-
ear systems develops further [ 27 ]|—[ 31 ]. Differential

! In this note we have replaced the term “modified” in [9] with the more descriptive term “filtered”.
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geometric techniques are combined with the IMP
resulting in a nonlinear RC strategy. A formulation
is presented for the case of input-state linearizable
and input-output linearizable systems in continu-
oustime [ 27 ]. By the input-output linearized meth-
od and theapproximate input-output linearized
method, the applicability of the finite-dimensional
RC to nonlinear tracking control problems is stud-
ied for three different classes of nonlinear systems:
1) with a well-defined relative degree, 2) which
fail to have a well-defined relative degree, and
3) linear plants with small actuator nonlinearity
[28]. By using feedbacklinearization and output
redefinition, a RC is developed to achieve precise
periodic signal tracking control of single-input sin-
gle-output nonlinear non-minimum phase systems
[297,[30]. By backstepping, RC design and anal-
ysis are developed for backstepping controlled non-
linear systems [ 31]. The backstepping control em-
ploys both feedback and feedforward actions to
render linearized 1/O plant and thus the outer loop
RC design can be based on the compensated linear
system.

Problem: By these new techniques, some non-
linear systems can be transformed into linear sys-
tems subject to nonlinear terms more easily. Exist-
ing design methods can be used directly, which fa-
cilitates the RC design. However, not all nonlinear
systems can be transformed into the familiar form,
or the resulting nonlinear terms are difficult to
handle.

2) Adaptive-control-like Approach . The oth-
er major way is to convert a tracking problem of
nonlinear systems intoa rejection problem of non-
linear error dynamics, then apply existing adap-
tive-control-like approach to the converted error
dynamics. Concretely, there exist two design
methods, namely Lyapunov-based (ILB) approach
[ 32 ]—[ 37 ] and evaluation-function-based ap-
proach [41]—[48]. The former is only applicable
to RC design, but the latter is applicable to both
RC design and iterative learning controller (ILC,
or iterative learning control, also designated ILC)
design. To clarify the previous work, we assume
that v is a learning variable, v, is a desired signal,
and 9=wv, —v is the learning error.

The Lyapunov-based approach is similar to the
traditional adaptive control approach, where v, is a

T-periodic signal for the former and is a constant
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for the latter. So, the resulting controllers are also
called as ‘adaptive’ repetitive learning controllers
[36]. To adopt the traditional adaptive control
(AC) approach or the LB approach, we need toob-

tain the nonlinear error dynamics in the form of
e(t) = fle,t) +ble,t)0(1), (3)

where e is the error. Because of the different de-
sired signals, the chosen Lyapunov functions and
the designed controllers are different, shown in

Table 1.

Table 1 The Differences

Lyapunov function Controller
AC o' (Do) v () =h(x,t)
| [ 2T @00 | oo =u— D+t
—T

Currently, the AC approach is the leading
method of designing RCs in nonlinear systems.
This approach is first applied to the control of ro-
bot manipulators [ 32]. Sequently, an intermediate
result (an assumption) is given in [33] to form the
framework of the LB approach.

Intermediate Result; The functions f:[0,0)
XR"™>R"and b:[0,00) X R"—>R "™ are bounded
when e(2) is bounded on R ©.
ists a differentiable function V.:[0,c0) X R" —
[0,00), a positive definite matrix M(z) =M" (1) €
R"" with 0<<Aml,<<M(z) and a matrix F(z.e(z))
€ R"" such that

Moreover, there ex-

Vitse()) <— " (OMDe(t) +F (1 e())0(0).
4)

Based on the intermediate result, the control-
ler v(t) =v(t—T)+ F(t,e(t)) can ensure the
tracking error approaching zero. The proof needs
to employ a Lyapunov functional V(¢,e(t)) +
I/ZJ 77 (s)9(s)ds and Barbalat’s Lemma,

—T

A novel learning approach is described in [ 34]
for asymptotic state tracking in a class of nonlinear
systems. Compared with the previous methods,
the best advantage of the proposed learning ap-
proach is computationally simple and does not re-
quire one to solve any complicated equations based
on full system dynamics. Hybrid control schemes
are developed, which utilize learning-based feed-
forward terms to compensate for periodic dynamics
and other Lyapunov-based approaches to compen-

sate for aperiodic dynamics [ 35]. A Lyapunov
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based adaptive RC is proposed for a class of nonlin-
ear parameterized systems [ 36 ]. Both partially and
fully saturated learning laws are analyzed in detail,
and compared analytically. By considering that
many RC schemes require the plant to be parame-
terizable, a repetitive learning is integrated with a-
daptive robust control by using the backstepping
design for a class of cascade systems without pa-
rameterizations in [ 37 |]. A continuous universal re-
petitive learning control is proposed in [38] to
track periodic trajectory for a class of nonlinear dy-
namical systems with nonparametric uncertainty
and unknown state-dependent control direction ma-
trix. In order to achieve a tradeoff between track-
ing performance and stability, an FRC is proposed
for a class of nonlinear systems [ 397]. More impor-
tantly, the proposed FRC can deal with small input
delay while the corresponding RC cannot.

The evaluation-function-based approach is ap-
plicable to design both ILCs [40] and RCs. The e-

valuation function is often formulated as follows

[41]—[48]:
T P
E :f 3L (0)5.(0)do

0
where 9, ()25 T+0),0€[0,T], T is the period
and i=0,1,2,-

jective is often to design ILCs for the resetting con-

is the iterative number. The ob-

dition and RCs for the alignment condition to result

in the relationship as follows:

AE,=E. —E;; <a(|e;(O)|? — |le; (D |

*Bf le.Co)]*do
0

)

where ¢, () Le(i T+, 6€[0,T], asf>0. Under
e ()| = o.
While, under the alignment condition, we have
| e (0) ” = |

dition, we can obtain

the resetting condition, we have |

e;(T)|. No matter under which con-

! T
lim > | e a0 < E, +ale, 0],

im0

Sequentially, by Barbalat’s Lemma, it can be
proved that the tracking error approaches zero as
as (—>co,

In the early years, the researchers mainly con-
sider the resetting condition by using the idea a-
bove. The the alignment condition is analyzed in
[14]. This work has greatly stimulated the more
recent development of both ILCs and RCs. [14],
the backstepping technique is combined together
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with the learning control mechanism for developing
a constructive control strategy to cope with nonlin-
ear systems subject to both structured periodic and
unstructured aperiodic uncertainties. RC schemes
based upon the use of a proportional-derivative
(PD) feedback structure is proposed in [45], for
which an iterative term is added to cope with the
unknown parameters and disturbances. The pro-
posed adaptive ILC of robot manipulators is further
improved in [47] Fully saturated adaptive RC for
trajectory tracking of uncertain robotic manipula-
tors is presented in [48].

Problem: Currently, the adaptive-control-like
approach is the leading method of designing RCs in
nonlinear systems. The structures of RCs obtained
for the linear and nonlinear systems are similar or
the same, but the ways to obtain these controllers
are very different. By recalling Section II, the
tracking problem can be reduced to a stabilization
problem of the closed-loop system. So, we do not
need to obtain error dynamics for LTI systems.
However, for nonlinear systems, it is often re-
quired to derive error dynamics to convert a track-
ing problem to a disturbance rejection problem as
(3). This in fact follows the idea of general track-
ing controller design, whereas the special feature
of periodic signals is under-exploited. Therefore,
the general tracking controller design will not only
restrict the development of RC, but also fail to re-
present the special feature and importance of RC.
For nonlinear non-minimum phase systems, the i-
deal internal dynamics are required to derive the er-
ror dynamics. This is difficult and computationally
expensive especially when the internal dynamics
are subject to an unknown disturbance [49]. As a
result, the authors suppose that this is the reason
why few RC works on such systems have been re-
ported.

3) Others: A formalism of ILC is used in [50]
to solve a RC problem of forcing a system to track
a prescribed periodic reference signal. The pro-
posed method adopts the idea of contraction map-
ping. However, the proposed method is only ap-
plicable to discrete-time systems. Moreover, it
cannot be applied to rejection of periodic disturb-
ances. A Quasi-Sliding Mode (QSM) based track-
ing control method is proposed for tackling MIMO
nonlinear continuous-time systems with un-matc-

hing system uncertainties and exogenous disturb-

49



ances [ 51 ]. The QSM-based RC is with the promi-
nent characteristics of invariance and robustness to
parameter variations and exogenous disturbances.
However, the proposed controller needs the deriv-
ative of state, which is often difficult to obtain ac-
curately in practice.

B. Existing Problems of RC

A linear RC system is a neutral type system in
a critical case [12],[13]. The characteristic equa-
tion of the neutral type system has an infinite se-
quence of roots with negative real parts approaching
zero, i.e. sup{Res|F(s) =0. where F(s) is the char-
acteristic equation. This implies that a sufficiently
small uncertainty may lead to sup{Res|F(s) =0}>0.
It is proved in [ 39] that a linear RC system will
lose its stability when subject to an input delay no
matter how small the delay is. Therefore, the sta-
bility of RC systems is insufficiently robust. The
simulations in [ 39 ] further show that a nonlinear
RC systems will lose its stability when subject to a
small input delay as well. In practice, input delay
is very common. Therefore, it is important to de-
sign a RC to deal with small input delay. Besides
input delay, the following problems also need to be
considered.

1) In linear systems, most of literature pays
attention to design digital RC. However, the re-
search on RC for nonlinear systems is almost a
blank. Currently, controllers are generally realized
by digital computers. With insufficient robustness of
RC systems in mind, it is still unknown if the dis-
cretized controllers destabilize the original systems.
Therefore, it isimportant to establish theories on de-
signing digital RCs for nonlinear systems.

2) Most of RC designs require the period
known a prior. In practice, the period cannot be
known exactly. How to design a RC to cope with
uncertain period is very practical as well. For line-
ar systems, quite a few researchers improve RCs to
deal with uncertain period [ 21]. However, there
exists few research on nonlinear RC systems sub-
ject to uncertain period.

RC is a specific tracking control. So, besides
the problems above, how to design RC for nonlin-
ear non-minimum phase systems and underactuated
nonlinear systems, etc, are still interesting.

As shown in Fig. 4, the periodic signal track-
ing problem is an instance of the general signal

tracking problem, and in turn includes the stability
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problem (means zero signal tracking problem here)
as a special case. Consequently, periodic signal
tracking should certainly be easier than general sig-
nal tracking. Nevertheless, if the RCs are designed
by following existing methods used for general sig-
nal tracking problem, then the special feature of
periodic signals is in fact under-exploited. There-
fore, general methods will not only restrict the de-
velopment of RC, but also fail to represent the
special feature and importance of RC. Since period-
ic signals are special, it is believed that there
should exist other methods, different from the
general methods, to design RCs for nonlinear sys-
tems. With this in mind, a new viewpoint on the
IMP and then a new design method are proposed in
[52]. Furthermore, the proposed design method is
applied to periodic signal tracking of nonlinear non-
minimum phase systems. However, the theories
therein need to be improved and completed fur-
ther.

General signal tracking problem

Periodic signal tracking problem

Stability problem

Fig. 4 Relationship between stability and tracking

Y. Relation between RC and Other Control Meth-
ods

By taking RC as a class of adaptive control,
‘adaptive’ repetitive learning control design devel-
ops well these years. However, as analysis above,
each design exists some drawbacks itself. So, it
encourages us to recognize RC from different
points of view. In the following, we will analyze
relationships between RC and other control
schemes.

(1) PID control and RC

Suppose a RC to be
u(t) =uCt—T) +TCke(t—T) + ket —T)

kg (t— ).
Then
LD ZUUZD) o= T 4 ke (= T)

—+ kdé'(l‘ — ).
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If T—0 and the limits of both sides above exist, then

o u() —ut—T)
u(t)—lTlBg T

— lim(kre(t — T) 4+ ke (t — T) 4+ ke (1 — T))
T—0

= ke (1) + k(1) + ki (1),

Furthermore, the equation above can be written as
u(y) = /e,J e(s)ds + ke (1) + ke () +c¢
0

where ¢ is a constant. When ¢=0, the RC becomes
a PID controller. In other words, PID control is a
special case of RC as T—0. It is well known that
PID control has been modified and extended great-
ly. Along these ideas, it is interesting to consider
how to apply the existing modified andextended
ways to RC.

(2) Optimization and RC

In order to express more explicitly, a simple
example is given as follows: the following dynamic

system
e(t) = f(e9u’d9t)

is subject to disturbance d with a period T. Sup-
pose that the following RC

u(t) =ut—T) +eCt—1T) (5

is adopted to make the tracking error e(z) —>0 as
{—>00,
Let us restate the control problem and design

from optimization. Suppose u(1),e(t),d (t) to be

continuous and define s, ()& s((k— 1T+ ,0€
[0.T],s=Cesusd) k=1,2,++-. Then s, €C[0,T]
and s, , (T) =s5,(0), where C[0,T] is the space of
continuous functions mapping [0, T] into R. Un-
der the definitions above, the controller (5) can

berewritten as

wy = upq e,
Since disturbance d is periodic, d, =d;—,, and then
the dynamic system can be rewritten é , = F(e,—1 su).

In space C[ 0, T], we define an inner product as fol-

lows:
T

(xyy) :J 2(DyDdd, x,y € CLO,T].

By the definition, the optimization objective can be
rewritten as (e, se,». Then the RC can be rewritten
as

min{e, se;)

s.t.e, = Flep suy).
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Here iterative algorithm is w, = u,—; + e,—1. In
sense of optimization, the optimization problem

can be also modified to be

min w1<uk 9uk> +wz<€k 7€k>

s. t. ("/ - F(@kfl 91/{,@).

where w, and w, are wights.

(3) Dynamic feedback control and RC

The designers often want to avoid the time de-
lay. In contrast, the time delay is brought into
RCs. An FRC is in fact a dynamics feedback con-
troller. A simple form of FRC is shown as follows
[53]:

z.(t) =—wax () +wx (t—T) +elt)

u(t) = wa (t—T)+e(®)

where x, is an auxiliary variable.

(4) Intelligent control and RC

A Russian proverb is “repetition is the mother
of learning”. In the time domain, a RC has repre-
sent a type of learning, where the current output
of RC has used the last output and tracking error.
Although the learning of RC is a low-level intelli-
gence, it can be described by mathematic language
and convergence can be proved. What does RC il-
luminate us? When human learns how to perform a
periodic task, his attention is often focused on par-
ticular points in the task: for example, in downhill
skiing, sharp turns are surely remembered and
carefully negotiated. For this reason, a new con-
cept: segmented RC is proposed in [16].

All the analysis above can help us recognize
RC more insightful. In the future work, we can
strengthen the relation between RC and other con-
trol methods. This may help us to develop more
new ‘derived’ type of RC to satisfy different re-

quirements.
V[. Conclusions

In recent years, the development on RC has
been uneven. The theories and applications in LTI
systems have developed very well. On the other
hand, RC for nonlinear systems has received limit-
ed research effort. Taking this into account, we
give a survey of RC for nonlinear systems in this
paper. Currently, there exist two major ways to
design RCs for nonlinear systems: 1) linearization
approach and 2) adaptive-control-like approach.

Each of them exists some problems. It is expected
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to develop more new design methods. In order to

recognize RC more insightful and develop more de-

sign methods, relationships between RC and some

control schemes are given.
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