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ABSTRACT 
In natural surface waters such as rivers and lakes, the supply of dissolved oxygen 
(DO) and the oxygen demand (BOD) are measurable quantities which determine 
the water's quality. Using specific water quality modeling systems and records of 
these measurable quantities, the important parameters governing the system 
response can be found. Once these parameters are determined, meaningful sets of 
controls may be imposed to keep water quality at or above acceptable standards. 
Many models have been proposed to represent the experimental observations. 
Most of these are variations of the classical Streeter-Phelps equation for the 
oxygen-sag relationship in rivers. The model which is considered in the present 
effort is due to Camp, and considers such effects (and the respective parameters) 
as sedimentation, (k3); photosynthesis (A); runoff (R); reaeration rate (k2); and 
the deoxygenation rate (kj). The method of nonlinear least squares combined 
with eigenvalue perturbations and parametric differentiation is used for parameter 
estimation for cases with both BOD and DO data and for DO data only. Both 
numerically generated test cases and actual laboratory experiments are considered 
in this "inverse" procedure. 

In natural surface waters such as rivers and lakes, the supply of dissolved oxygen 
(DO) and the biochemical oxygen demand (BOD) are measurable quantities 
which determine the water's quality. Using specific water quality modeling 
systems and records of these measurable quantities, the important parameters 
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governing the system response can be found. Once these parameters are 
determined, meaningful sets of controls may be imposed to keep water quality 
at or above acceptable standards. 

Many models have been proposed to represent the experimental observations 
[1]. Most of these are variations of the classical Streeter-Phelps equation for the 
oxygen-sag relationship in rivers. More complicated models of stream water 
quality would consider the system of partial differential equations resulting from 
the complete mass, momentum, and energy transport considerations [2]. 
Various assumptions conveniently reduce these equations to simple relationships 
which seem to model the behavior in rivers adequately. The model which we 
consider in the present effort is that due to Camp [3]. It considers such effects 
(and the respective parameters) as sedimentation, (k3); photosynthesis, (A); 
runoff, (R); reaeration, (k2);- and deoxygenation, (ki). These equations are 
written 

dR 
^ + ( k 1 + k 3 ) B = R 

dD & 
^ +k2D = k i B - A 

where B is the biochemical oxygen demand in parts per million (ppm) and D is 
the dissolved oxygen deficit, equal to the temperature dependent saturation 
concentration of dissolved oxygen minus the amount of oxygen actually present 
in the water in ppm. The assumptions inherent in this system of equations and 
typical values of the parameters are presented in Camp [3], Dobbins [4] and 
Clark and Viessman [5]. 

Lee and Hwang [7] have utilized the methods of quasilinearization [6] and 
invariant imbedding to perform parameter estimation for this formulation. 
Quasilinearization is an iterative method which considers a linear approximation 
to the system of ordinary differential equations to the model. Thus some of the 
models presented in Shastry et al. [1] would have to be linearized. In invariant 
imbedding, a large number of simultaneous ordinary differential equations is 
integrated numerically even for a few unknown parameters. The estimator 
equations are nonlinear even if the original model is linear. 

Least squares offers a flexible method which can also be utilized for this 
problem, and which deals with the differential equations of the model. Like the 
two other methods, good initial estimates of the parameters are required for 
convergence on final estimates. 

An analytical solution for equation (1) with initial conditions can be obtained 
for constant R and A which is nonlinear in the parameters kj , k2, k3, R, A. 
Rather than considering the explicit form of this solution we consider the 
solution expressed in terms of the eigenvalues and eigenvectors of the system 
and perturb these to obtain quantities used in the normal equations of regression 
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analysis [8]. Thus, this method is applicable to larger systems of linear ordinary 
differential equations with constant coefficients. A correction vector to the 
estimates is calculated iteratively by the modified Newton-Raphson method 
until the sum of squared errors changes by less than some prescribed amount. 

Parametric differentiation of the original system of equations offers an 
alternate means of obtaining the needed quantities. This method is applicable to 
nonlinear systems as well as to integrodifferential equations [8] and is utilized 
for identification in cases for which only dissolved oxygen data is available. 

As a test case, we consider the determination of k j , k2, k3, R, A and the 
initial conditions B0 and D0, from perfect data which is generated by using 
known values of the parameters. The resultant estimates may then be compared 
to those used to generate the data both for the perfect data and for deliberately 
corrupted data. In addition, the method of nonlinear least squares will also be 
used for parameter estimation for sets of dissolved oxygen data taken under 
closely controlled laboratory conditions. It is felt that only with data obtained 
from such conditions can valid parameter identification be performed and the 
parameters then related to the pertinent physical phenomena. 

Least Squares 

The minimization of the sum of the squared errors between the observed 
quantities and a best fit utilizing estimates to the unknown parameters forms the 
basic idea of least squares. The flexibility and simplicity of least squares makes it 
one of the most widely used statistical methods. Simple assumptions and 
modifications of the basic concept allow for maximum likelihood and Bayesian 
estimates to be obtained. 

The mathematical model relating the parameters and the observed quantities 
is sometimes given by the linear form 

Y = H θ + U (2) 

The specific set of data form a sample of the random variables Y and U 

y = H θ + u (3) 

for y and N-dimensional vector of data points, Θ, a k-dimensional vector for 
unknown parameters, and H is a N by k matrix of known quantities. 
Minimization of the sum of squared errors 

S(0) = uTu (4) 

for uT representing the transpose of the vector of errors, u, yields the following 
estimate to the parameters 

ô = [ H T H ] - 1 H T y (5) 

Maximum likelihood estimates can be obtained if the errors are assumed to be 
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multivariate normal and if the correlation matrix of the errors, which are 
assumed to have expected values of zero, is 

E {UUT }= Vu (6) 

The resulting minimum variance estimates are unbiased 

0 = [ H T V u - 1 H ] - 1 H T V u - 1 y (7) 

Although equation (2) indicates that a linear relationship exists between the 
unknown parameters, it frequently happens that the relationship is a nonlinear 
one 

y = h(0) + u (8) 

h can be approximated by a first order Taylor series about initial estimates to 
the parameters, 0O 

y = h(0o) + Σ^τ 
j = i j 

„o«v m 
for k unknown parameters. Optimization of (uTu) with respect to 50 yields the 
following estimate to the parameters at the 8th iteration 

0E+i = 0S + [Η τ Η]- χ Η τ [y-h(08)] (10) 

in which 
9hj 

Maximum likelihood estimates are 

08+i = 08 + [ Η Τ ν ^ Η Ι - Ή Τ ν ^ 1 [y-h(08)] (12) 

Bayesian estimates can be obtained if the parameters are assumed to be 
random variables with a multivariate normal distribution with expected value 
and covariance matrix of 

E{0}=0O E { ( 0 - 0 o ) ( 0 - 0 o ) T } = Ve (13) 

Maximization of the unconditional likelihood function yields 

Âa+i-ÂB + Î H T v ^ H + V e - 1 ] " 1 

{Ηχ-Πγ-Η^Ι-ν ,Γ 1 [08 - 0O]} 
Often Vu and Vg are not known a priori and normal least squares yields 

first estimates to the parameters. A study of the errors can determine whether 
they are correlated or not. We only consider normal least squares estimates in 
this work, but should there be additional information, maximum likelihood and 
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Bayesian estimates can be obtained by the same algorithm, with appropriate 
modifications. Bayesian formulation for biochemical oxygen demand-dissolved 
oxygen deficit applies when initial estimates to k j , k2, k3, R, and A have been 
made from other experiments such as light and dark bottle tests for 
photosynthesis and winkler tests for BOD. 

Eigenvalue Analysis 

The mathematical model, equation (1) can be expressed in matrix terms 

with initial conditions 

in which 

X = 

dx 
dt 

= Qx + F 

Dr 

"B" 

JD_ 
F = 

"R 

zK 
Q = 

- ( k i + k 3 ) 0 

k, -k2 

Since this is a linear system the solution is given by 
, t 

x(t) = X(t)x0 + J X(t)X"1(r) F(T) άτ 

(15) 

(16) 

(17) 

(18) 

where X is the fundamental matrix which satisfies 

£=«* x0 = i (19) 

with initial conditions equal to the identity matrix. 
Since we are considering a linear system with constant coefficients, the 

solution can be expressed in terms of the eigenvalues and eigenvectors of Q 

x = PeAtP"1x0 + f P e ^ - ' V 1 F(T) dr (20) 

for P the matrix of right eigenvectors, P - 1 , the matrix of left eigenvectors, and Λ 
the matrix of eigenvalues. Furthermore, for constant F the solution finally 
reduces to 

x = PeA tP_ 1 [x0 + Q"1 F] - Q - 1 F (21) 
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For F, Q, and x 0 given by equations (16) and (17), the following are readily 
calculated 

„At 

P = 

e - ( k i + k 3 ) t 

0 

0 

k t + k3 - k2 

V k , a + ( k , + k 3 - k 2 ) 2 
- k , 

V k i 2 + ( k i + k 3 - k 2 ) 2 

(22) 

IPI 

l. 0 

k i k t + k3 - k2 

V M + i ^ + k 3 - k 2 ) 2 V k i 2 + ( k i + k 3 - k 2 ) 2 

where the determinant of P is given by 

ki + k3 - k2 
IPI VM+tk i+ka-k, )* 

(23) 

and the solution becomes 

B = f R i e ~ ( k i + k 3 ) t + — 
[tS° k 1 + k 3

J e + k 1 + k 3 

D = e - K 2 l {D0 + 
, ^ - Α Π Λ · - . ] 

-R 

(24) 

+ ki 

[ B O j ^ ] [ e ( k 2 - k i - k 3 ) « - l ] 

k2 - kj - k3 
} 

Thus for observed data in the form of biochemical oxygen demand and 
dissolved oxygen deficit, and unknown parameters, k 1 ; k 2 , k 3 , R, A, B 0 , and 
D 0 ; we have at the i t h data point 

Bi = B(ti,0) +ub i 

Di = D(ti,0) +ud i 

(25) 

where B and D are clearly nonlinear in the seven unknowns. 
The partial derivatives of the BOD and DO with respect to the unknown 
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parameters are required for the normal equations, equation (10), of regression 
analysis. These could be obtained by differentiating the solution given by 
equation (24). Rather than doing this, however, we will present a method based 
on the perturbation of the eigenvectors and eigenvalues of the system. This is 
general and can be applied to larger systems of linear ordinary differential 
equations with constant coefficients. 

The partial derivative of the solution given by equation (21) with respect to 
the parameters is expressed in terms of the partial derivative of the system 
matrix, Q, the matrix of right eigenvector, P and left eigenvectors, P _ 1 , the 
eigenvalue matrix, Λ, and the forcing vector, F, with respect to the parameter, 0 

| j = ^ [PeAtP~1 ] [x0 + Q"1 F] + PeA*p-!iio 

a S" <2 6> 
+ [ P e A t p - 1 - l ] ^ [ Q - 1 F ] 

The partial derivative of Q_ 1 and P - 1 with respect to the parameters can be 
expressed in terms of the partial derivative of Q and P respectively [8] 

*?1 =-P-I » p-i 
90 30 P 

(27) 

since 

Q~1Q = P-1P = I (28) 

For right eigenvectors, uk, the optimization of the quadratic form 

v£[Q-^kI]u k (29) 

for vk the left eigenvector, yields the perturbation of the eigenvalue with respect 
to0 

W***"* (30) 

For Uk the normalized eigenvector associated with Xk (uk is the k*h column of 
the matrix P) 

u £ u k = l (31) 

the perturbation of the eigenvector can be expressed as a summation of n - 1 
terms, (n is the dimension of Q, two for our problem) 

9uk n 
3fl-= Σ 7 i k V i (32) 
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Optimization of the quadratic forms 

vJ (Q-X k I )u k 

yields n - 1 equations for the n - 1 unknown constants, γ ^ 

vj ^ u k + (λε - Xk) Σ 7ikvJ Vi = 0 ß * k 
i#k 

(33) 

(34) 

The partial derivatives of Q, eA t , and P are readily obtained from equations 
(17), (30), (32), and (34). For kj the unknown parameter, for example, there 
results, 

9Q _ 
3k, 

9eA t 

9ki 

9P 

Γ 1 
"- te""»* 0" 

_0 0^ 

k2 - k 3 

(35) 

9k, [ ^ 2 + ( ^ + ^ - ^ ) 2 ] 3 / 2 
kj + k3 - k2 0 

which are identical to values obtained by differentiation equation (22). Since Q 
is not symmetric we are not assured that the eigenvalues and associated 
eigenvectors are real. Our analysis will be restricted to real eigenvalues, and thus 
exponential behavior, however. For complex eigenvalues the solution to the 
homogeneous system of equations is made up of decaying sinusoids [8]. 

This method is restricted to cases where the differential equations are linear 
with constant coefficients. However, it is applicable to systems larger than two. 
Nevertheless, a method is required which can deal with nonlinear models such as 
those given in Shastry, et al. [1]. 

Parametric Differentiation 

Another method of obtaining the partial derivatives with respect to the 
parameters considers the system of differential equations rather than the 
solution to the system. Thus it is applicable to nonlinear systems as well as to 
linear ones. The sensitivity equations are obtained by taking the partial 
derivative of the system with respect to the parameter and interchanging 
differentiation in time and the parameter. Thus for equation (15), 

dt W g 90 90 X 9Θ (36) 
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These can be solved either by numerical integration or by eigenvalue analysis if 
the F vector is of simple form, such as sinusoidal or constant functions. 

In some situations of water quality observation, the dissolved oxygen is 
observed but the biochemical oxygen demand is not. A method of parameter 
estimation based on this data is required. For non-constant R in equation (15), 
the analytical solution for the biochemical oxygen demand can be obtained by 
the integrating factor technique 

t 
B = B 0 e- ( k i + k 3> t + f e-(k i+ k3)( ' - r )R(T)dT (37) 

o 

and the equation for the dissolved oxygen deficit becomes 

^ + k2D = -A(t) + k! {Βοε-(κι+1ι3)ι + | 6 - ^ ι + ^ ) 0 - τ ) κ ( τ ) α τ } ( 3 8 ) 

Parametric differentiation of this equation with respect to the unknown 0 yields 
the desired sensitivity equation 

dt ^90 k 2 90 90 U 90 90 l l B ° e J 

+
 dll fV^i+XsX'-^Rtodr (39) 

+ k, f 
o · ' 

t 9 [ e _ ( k l + k 3 ) ( t _ T ) 

do 

The partial derivatives of D with respect to kj , k2, k3l B0, and D0 can be 
obtained, as well as with respect to R and A should these be constant. 

Numerical Results 

The methods of eigenvalue analysis and parametric differentiation are utilized 
on simulated data with and without generated noise with zero mean and 
standard deviation .1. These are utilized to obtain estimates for which we know 
the answer, and will indicate the applicability of the methods to perfect data and 
data with errors which are independent and Gaussian. For cases one and two, the 
method of eigenvalue perturbation is used for estimation of the seven parameters 
for the situation in which BOD and D are observed, and for which only dissolved 
oxygen data is available. Eigenvalue perturbation and parametric differentiation 
are used to obtain estimates for kx, k2, A and D0 from observation of oxygen 
data only in cases three and four. The fifth case considers determination of all 
seven parameters, from oxygen data only, by parametric differentiation. 

Iteration is performed until the sum of the squared errors changes by less 
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than .00001 or until twenty-five iterations are required. For cases in which both 
BOD and D are observed, each data point is weighed equally. Initial estimates are 
given in the table. For cases in which k3, R, and B0 are not determined, these 
values are set equal to the values used to generate the data. Subroutines GAUSS 
and RANDU of the IBM Scientific Subroutine Package are used to generate the 
errors on an IBM 360/95. 

The results of these five cases are given in Table 1. The correct values, initial 
estimates, and final estimates for the parameters are shown. The variance of the 
errors at the final estimate is indicated for each case as is the number of 
iterations required for convergence. The variance of the parameters are shown in 
the table underneath the parameter in parentheses. The best fit lines and the 
generated data for BOD(+) and dissolved oxygen deficit(X) are given in Figure 1 
where BOD has been nondimensionalized by the initial BOD equal to 5 ppm and 
the dissolved oxygen data (saturated minus deficit) is nondimensionalized by the 
saturated value set equal to 5 ppm for convenience. Lines denoted by 2 and 2σ 
correspond to results from uncorrupted and corrupted data respectively, for case 
2. The corrupted data and best fits are shown in Figure 2. 

The fits to the dissolved oxygen data are good for both the corrupted and 
perfect data for all five cases. The best fit to the dissolved oxygen data is good 

DAYS 

Figure 1. 
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DAYS 

Figure 2. 

for case 1 and 1 a which considered this data but is not very good for all other 
cases. For cases 3 and 4 which assumed k3, R and B0 as known, it is better than 
cases 2 and 5 which treated these as unknowns. 

The estimates of the parameters for uncorrupted data are the same for 
eigenvalue perturbation and parametric differentiation methods in cases 3 and 4 
and 3σ and 4σ, but differ between case 2 and 5 and 2σ and So. When an estimate 
is not very good there is a large variance associated with it indicating the merit of 
the estimates. From these results it is shown that good estimates may be 
obtained if both BOD and D data are available, or for D data only, if k3, R, and 
B0 are known. 

Experimental Study 

A laboratory scale experiment was conducted in which natural reaeration 
phenomena was examined through a wide range of dynamic conditions. In 
particular the experimental study was focused on the influence of wind action 
upon reaeration phenomena. 

The faculties used for this experimental investigation were those of the 
Institut de Mécanique Statistique de la Turbulence, directed by Professor A. 
Favre in Marseilles, France. The wind tunnel-water channel facility had a test 
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section consisting of an 8m fetch wherein wind velocities could be varied 
through the range from 0-15 m/sec. and where water velocities varied from 0-18 
cm/sec in a channel 15 cm deep by 55 cm wide. In both the air and water flows, 
constant temperature (20°C) conditions were maintained via heat exchanges in 
both closed fluid circuits. Further details concerning the experimental facility 
can be found in Reference 9. 

The experimental procedure consisted of chemically extracting the dissolved 
oxygen from the water. This extraction used catalyzed sodium sulfide and 
reduced the dissolved oxygen deficit to 10 or 20% of the saturation value. Each 
individual experiment then consisted of establishing the desired temperature and 
velocities for both the air and the water and then monitoring the dissolved 
oxygen increase to saturation conditions using Winkler and osmosis methods. In 
all of these laboratory scale experiments, no BOD data were recorded. 

The dissolved oxygen results for constant water velocity with variable wind 
velocity conditions are presented via the data points in Figure 3. Fitting these 
dimensionless dissolved oxygen uptake curves using the nonlinear least squares 
techniques with parametric differentiation described above gives the constants 
tabulated in Table 2 for constant water velocity. The best fit lines are shown 
graphically in Figure 3 and in tabular form in Table 2. 

Comparing the reaeration coefficient, k2 as presented in Table 2 for the case 

Figure 3. 
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Table 2. Parameters for Best Fit Lines (Values in parentheses are variances) 

case a 

case b 

casec 

Water 
velocity 
(cm/sec) 

18.0 

18.0 

18.0 

Air 
velocity 
(m/sec) 

15.0 

7.5 

0.0 

k1 1 (Hrs-'f 

1.9971 
(0.0259) 

0.9163 
(0.0008) 

0.2816 
(0.0008) 

Hrs~1) 

8.0504 
(0.0259) 

1.9374 
(0.0002) 

0.6229 
(0.0004) 

Bo 
Ippm) 

10.45 

10.80 

10.00 

Do 
(ppm) 

5.5050 
(0.0333) 

7.5189 
(0.01444) 

5.7601 
(0.0306) 

Var 

0.00366 

0.00532 

0.0390 

of no wind to that for wind velocity of 15 m/sec it is found that a factor of 
approximately 13 is found. It is concluded that the wind can exert a significant 
influence on natural reaeration. 

Conclusions 

The method of least squares together with eigenvalue perturbation and 
parametric differentiation are shown to yield good estimates of water quality 
parameters for observation of both the biochemical oxygen demand and the 
dissolved oxygen deficit. The method of parametric differentiation can also be 
used for parameter estimation for dissolved oxygen data only if the initial BOD, 
the sedimentation rate, and the rate of runoff are known. 

These methods are utilized on corrupted and uncorrupted data obtained by 
simulation of the time series. Parametric differentiation is utilized on actual 
physical data of dissolved oxygen only. 

Although these methods are applied to a simple model, they may, in general, 
be used for more complicated models should the data require this. Second order 
terms for the decay rates could be considered and the effect of nitrification 
could be modeled, thus increasing the number of equations. Parametric 
differentiation could also be used for nonlinear models such as those considered 
by Shastry, Fan and Erickson [1]. Although R and A are considered constant 
here, they could vary along the stream or be random variables. Again this 
method could be used along with numerical integration of both the equations 
for D and BOD and the sensitivity equation. Finally, partial differential 
equations could be treated using this method of parametric differentiation. 
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