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ABSTRACT

The present article discusses the development of neural-network-based air

quality prediction models which can work with a limited number of data sets

and are robust enough to handle data with noise. Five different variations

of neural network models (partial recurrent network (PRNM), sequential

network construction (SNCM), self-organizing feature maps (SOFM),

moving window (MWM), and integrated normalized autoregressive moving

average-self-organized feature maps models (NARMA-SOFM)), were imple-

mented in a WINDOWS environment using MATLAB software. Developed

models were run to simulate and forecast the daily average data for three

parameters: RPM (respirable particulate matter), SO2 (sulphur dioxide), and

NO2 (nitrogen dioxide) for the Ashram Chowk location in New Delhi,

India. The implemented models were found to predict air quality patterns

with modest accuracy. To improve the models’ performance, an innovative

approach using an opportunistic ensemble of the first four developed neural

network models (OEM) was proposed for predicting the same short-term data.

The ensemble approach indeed demonstrated an improvement on earlier

models. However, the NARMA-SOFM model performed the best.
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INTRODUCTION

The air-quality problems of a region may be characterized from two perspectives:

the violations of air-quality standards and the public concern about air quality,

effects on health, and degradation of visibility. For such purposes, local environ-

mental protection agencies are required to make air pollution forecasts for public

advisories, as well as provide input to decision makers on pollution abatement

and air quality management issues [1].

Natural phenomena typically may be captured at a time series with some

degree of randomness. Previous studies have demonstrated that the data of

ambient air quality are also stochastic time series, thereby making it possible

to make a short-term forecast on the basis of historical data [2]. Though models

may be imperfect, they are the best tools for use in all aspects of air quality

prediction.

Neural networks, which are massively parallel computational models, are based

on the present understanding of the functioning of the biological brain. A neural

network is an interconnected assembly of simple processing elements called

nodes, which work similar to neurons. The processing ability of the network is

stored in the inter-node connection strengths, also called weights, obtained by

a process of adaptation to, or learning from, a set of training patterns. It is the

learning capability of neural networks which have made them more popular

than mathematically formulated models [3-5]. Particularly in environment-related

areas, the neural networks have emerged as a more flexible, less assumption-

dependent, and more adaptive methodology [6], and many researchers have

illustrated their applications in rainfall runoff modeling, precipitation forecasting,

stream flow forecasting, lake/reservoir/groundwater modeling, water manage-

ment policy, reservoir operations, real-time control of water and wastewater

treatment plants, water quality management, air quality management, adsorbent

beds design, and hazardous waste management [7-13]. In the present study, air

quality prediction models based on neural networks are developed to predict

short-term air pollution.

Barai and Reich have shown that prediction models could be improved by the

combination of multiple models into one through an approach called ensemble

modeling [14]. There are two kinds of approaches in ensemble modeling: oppor-

tunistic and principled. The opportunistic approach emerges from the usual itera-

tive data modeling process where, as various models are studied, the problem

becomes better understood and the best model is selected while others are dis-

carded. In opportunistic ensemble modeling, instead of discarding these models,

they are combined into one. If the models are quite different in kind and reason-

ably good, the ensemble should improve upon the best of them. The principled

ensemble approach seeks to generate systematically a set of models as accurate

and diverse as possible from which a single model is composed. Typical models

of this kind are described elsewhere [14].
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The aim of the present study is to build the neural-networks-based air quality

predictors, which can work with limited sized data sets and should be robust

enough to handle data with noise. An attempt has been made to investigate the

advantage of using an ensemble of the developed models for forecasting air

pollution. The primary objectives of the study are as follows:

• To collect and analyze suitable data sets for multiple air quality parameters

containing daily average pollutant concentrations at a specific location.

• To use various available variations of neural network models to predict

short-term air quality.

• To conduct exhaustive neural network simulations using developed air quality

prediction models and above-mentioned data.

• To compare air quality prediction model(s) with respect to daily (short-term)

data.

• To develop and assess the performance of an ensemble model.

DEVELOPING AND IMPLEMENTING VARIOUS

NEURAL NETWORKS-BASED AIR QUALITY

PREDICTION MODELS

For the present study, the following neural network model architectures

have been used for developing air quality prediction models [1] and have been

implemented on a microcomputer in MATLAB software [15] using the Neural

Networks Toolbox [16].

Recurrent Network Model (RNM)

For a neural network to be dynamic, it must be given memory. Memory may

be divided into “short-term” and “long-term” memory depending upon the reten-

tion time. Long-term memory is built into a neural network through supervised

learning, whereby the information content of the training data set is stored in

the synaptic weights of the networks [5]. However, if the task at hand has a

temporal dimension, we need some form of short-term memory to make the

network dynamic. The static network accounts for non-linearity and the memory

accounts for time. Short-term memory can be implemented in continuous time or

in discrete time. Such networks typically use a variant of back-propagation for

training. There are three ways that a “memory” can be introduced into static neural

networks [17, 18]. These are (in increasing order of complexity and capability).

Tapped Delay Lines Models

In these models, the network has past inputs explicitly available (through a

tapped delay line) to determine its response at a given point in time. Thus, the
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temporal pattern is converted to a spatial one, which can then be learned through,

say, classic back-propagation [5].

Context Model or Partial Recurrent Models

These models retain the past output of nodes instead of retaining the past

raw inputs. For example, the output of the hidden layer neurons of a feed

forward network can be used as inputs to the network along with true inputs.

These “network derived” inputs are also called context inputs. When the inter-

connections carrying the context inputs are fixed, classical back-propagation

can be used for training the network.

Fully Recurrent Models

These models employ full feedback and interconnection between all nodes

[5]. Algorithms to train fully recurrent models are significantly more complex in

terms of time and storage requirements.

In the present study, the partial recurrent network model (PRNM) has been

used. The algorithm and details are discussed elsewhere [5].

Sequential Network Construction Model (SNCM)

This model introduces an application of the “sequential network construction”

to select the size of several popular neural network predictor architectures for

various benchmark-training sets. The specific architecture considered here con-

sists of a finite impulse response (FIR) network and the partial recurrent Elman

network for adding context units to the output layer [19]. This model considers

an enhancement of an FIR network in which only the weights having relevant

time delays are utilized. Bias-variance trade off in relation to the prediction risk

estimation by means of nonlinear cross validation is discussed elsewhere [20].

Self-Organizing Feature Maps Model (SOFM)

These networks are based on competitive learning, i.e., the output neurons of

the network compete among themselves to be activated or fired, with the result

that only one output neuron or one neuron per group is on at any one time [5].

An output neuron that wins the competition is called a winning neuron. One way

of inducing a winner-takes-all competition among the output neurons is to use

inhibitory connections (negative feedback paths) between them.

In a “self-organizing feature map,” the neurons are placed at the nodes of

a lattice that is usually one- or two-dimensional. The neurons become selectively

tuned to various input patterns or a class of input patterns in the course of a

competitive learning. The locations of the neurons so tuned become ordered

with respect to each other in such a way that a meaningful coordinate system for

different input features is created over the lattice. Hence, neurons in the lattice
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are indicative of intrinsic statistical features contained in the input patterns. The

spatial location of an output neuron in a topographic map corresponds to a

particular domain or feature of data drawn from input space [21].

The principal goal of the self-organizing feature map (SOFM) is to transform

an incoming signal pattern of arbitrary dimension into a one- or two-dimensional

discrete map, and to perform this transformation adaptively in a topologically

ordered fashion. Each neuron in the lattice is fully connected to all the source

nodes in the input layer. This network represents a feed forward structure with a

single computational layer consisting of neurons arranged in rows and columns.

The algorithm responsible for the formation of the SOFM proceeds first by

initializing the synaptic weights in the network. This can be done by assigning

them small values picked from a random number generator. Once the network has

been properly initialized, there are three essential processes involved in the

formation of the SOFM, explained elsewhere [5, 6].

Moving Window Model (MWM)

This model is used for time series analysis of the given data sets. It utilizes

the past values of the parameter which is to be modeled. The input values may

vary from one to any desirable number, which gives lower error. This model

can utilize both back-propagation and recurrent networks for training and simu-

lation [5]. This model predicts one step ahead values of the parameter that is

being modeled. For multi-step ahead prediction, predicted values are used as

the feedback input again. The following are possible ways the data modeling

was carried out:

• MWM2: with two values of the past input data

• MWM3: with three values of the past input data

• MWM4: with four values of the past input data

• MWM5: with five values of the past input data

In the present study, back-propagation has been used.

Opportunistic Ensemble Model (OEM)

To improve the performance, an opportunistic ensemble model has been

developed which essentially combines the above mentioned models with equal

weights as shown in Figure 1.

Integrated Nonlinear Auto Regressive Moving Average

and Self-Organizing Feature Maps Model (NARMA-SOFM)

This model is applied, keeping in view the erratic nature of the data sets. A

polynomial of suitable degree is fit into the data sets. This model uses the

Statistical Toolbox of MATLAB [15]. After getting a polynomial of suitable
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degree, artificial data sets are generated. One set of this data is used for training

and another set is used for testing. This model uses self-organizing feature maps.

For multi-step prediction, the last predicted values are used as the feedback to

the network again. This model uses the Polyfit, Polytool, and Plyval functions of

Statistical Toolbox of MATLAB.

The algorithmic details of all above models and their performance capabilities

has been discussed in Sharma [22]. All the models have been implemented in

WINDOWS environment using MATLAB.

INPUT DATA AND MODELS APPLICATION

The data for three parameters (RPM (respirable particulate matter), SO2

(sulphur dioxide), and NO2 (nitrogen dioxide)) has been collected for nine

locations in New Delhi, India from Tata Energy Research Institute Web site

(www.teri.in). This dataset consists of daily average pollutant concentrations

for the two years from July 2000 to August 2001. However, for the present study

only the data for Ashram Chowk has been used for carrying out simulation studies

[22]. The statistical properties of the data are given in Table 1.

The input data (wt) to the network is the normalized as follows such that

normalized values (It) fall between 0.1 and 0.9:

It = 0.5 – (Wmean – Wt) / (Wmax – Wmin)*0.8

where Wmax, Wmean, Wmin are the maximum, mean, and minimum values in the dataset.

After modeling, the normalized output predictions (Wpr) produced by model

are reverse-normalized using:

Ot = Wmean – (0.5 – Wpr) / 0.8*(Wmax – Wmin)

where Ot is predicted value produced by the model.
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The parameters used for applying various models, (PRNM, CPDM, SNCM,

SOFM, MWM, and NARMA-SOFM models) are presented in Tables 2 to 6,

respectively. Out of 110 data points of the time series, initial 80 points of time

series data were used for training the models. Remaining 30 points of time series

data were used to predict air quality parameters.

The performance of each model is measured in terms of the mean percentage

error (MPE) defined as follows for 5,000 typical iterations or for achieving

specified sum squared error (SSE) by the network, whichever comes first:

MPE = (target – output) / target*100

RESULTS AND DISCUSSION

The performance of various models for different air quality parameters has been

estimated in terms of mean percentage error (MPE) as shown in Table 7. The

model having minimum MPE is expected to be the best model for forecasting.

The present case study demonstrates an example of a daily average emission data

prediction using various neural networks model for a reasonable size dataset

(80 data points). Models, in general, have performed reasonably well even though

data was chaotic by nature (Table 7).

To improve the model performance, the weighted average opportunistic

ensemble model OEM (Figure 1) combining all the first four models has been

developed and tested. The ensemble of model was developed using PRNM,

SNCM, SOFM, MWM2, MWM3, MWM4, and MWM5 models. The results

given in Table 7 show that ensemble model indeed improved the performance of

neural networks over the other independently developed models. The typical

results from the ensemble model for the predictions of RPM, SO2, and NO2

are shown in Figures 2 through 4. From the figures, it is clear that ensemble

model predicts the trend reasonably close to the actual air quality data. A strik-

ing observation has been that though the ensemble model, in general, could

predict with modest accuracy, NARMA-SOFM has performed extremely well in
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Table 1. Statistical Properties of Input Dataset

Air quality parameter

Statistical property RPM SO2 NO2

Mean

Std. deviation

Median

172.83

119.88

141

9.587

3.7

9

77.18

31.59

72



comparison to all other models (Table 7). This performance could be attributed

to an integrated approach of statistical model with neural networks model.

FUTURE PROJECTIONS

The studied models predict based on the limited history of air quality. However,

model prediction can be improved by incorporating the following features:

• Models can have as inputs data from multiple sources, such as historical

air quality measurements and meteorological data

• Models can have, along with emissions data, episode levels definition and

historical measurements of surface and upper air meteorological data.

• Models should have an easy-to-use interface and should be able to present

the results in an understandable way to non-computer experts.
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Table 2. The Parameters Selected for PRNM Model

PRNM model parameter RPM SO2 NO2

NN architecture

Activation function

Learning rate

No. of epochs

SSE

Input parameters

Output parameters

1-10-10-1

Tansig/purelin

0.04

5000

0.1e-4

Day No.

RPM

1-10-10-1

Tansig/purelin

0.04

10000

0.1e-4

Day No.

SO2

1-10-10-1

Tansig/purelin

0.04

10000

0.1e-4

Day No.

NO2

Table 3. The Parameters Selected for SNCM Model

SNCM model parameter RPM SO2 NO2

NN architecture

Activation function

Learning rate

No. of epochs

SSE

Input parameters

Output parameters

1-3-3-1 to 1-8-8-1

Tansig/purelin

0.03

1000

0.1e-7

Day No.

RPM

1-3-3-1 to 1-8-8-1

Tansig/purelin

0.03

1000

0.1e-7

Day No.

SO2

1-3-3-1 to 1-8-8-1

Tansig/purelin

0.03

1000

0.1e-7

Day No.

NO2
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Table 6. The Parameters Selected for NARMA-SOFM Model

NARMA-SOFM model

parameter RPM SO2 NO2

NN architecture

Learning rate

No. of epochs

Input parameters

Output parameters

1-5-1

1

10000

RPM

RPM

1-5-1

1

10000

SO2

SO2

1-5-1

1

10000

NO2

NO2

Table 4. The Parameters Selected for SOFM Model

SOFM model parameter RPM SO2 NO2

NN architecture

Learning rate

No. of epochs

Input parameters

Output parameters

1-5-1

1

5000

RPM

RPM

1-5-1

1

5000

SO2

SO2

1-5-1

1

5000

NO2

NO2

Table 5. The Parameters Selected for MWM Model

MWM model parameter RPM SO2 NO2

NN architecture

Activation function

Learning rate

No. of epochs

SSE

Input parameters

Output parameters

1-12-12-1

Logsig/Logsig

0.03

20000

0.1e-6

RPM

RPM

1-12-12-1

Logsig/Logsig

0.03

20000

0.1e-6

SO2

SO2

1-12-12-1

Logsig/Logsig

0.03

20000

0.1e-6

NO2

NO2



• The model parameters and architecture of models in this research work

were arrived at through trial and error. One can arrive at optimal and

better performance model after carrying out systematic studies on network

models and their parameters using optimization techniques such as genetic

algorithms.

CONCLUSIONS

In this study, air quality forecasts were made using several neural network

models, concentrating on single variable(s)-based time series prediction from

short-term daily average air quality data sets. The models were easily imple-

mented by commercial software and could deliver fast predictions, unlike some

other modeling techniques, and accommodated input noise well. An oppor-

tunistic ensemble modeling approach improved model performance further.

The results indicate that neural networks are a practical tool for real-time air

quality management and prediction.
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Table 7. Neural Network Models Performance

Air quality

prediction mode

Mean percentage error

S.N. RPM SO2 NO2

1

2

3

4

5

6

PRNM

SNCM

SOFM

MWM2

MWM3

MWM4

MWM5

Opportunistic

ensemble of

PRNM+SNCM+

SOFM+MWM2+

MWM3+MWM4+

MWM5

NARMA-SOFM

56.76

33.45

25.6

25.71

32.38

36.51

43.52

29.11

21.66

48.63

37.79

30.73

25.51

28.87

21.97

31.59

19.87

8.82

43.5

35.87

28.94

22.93

28.61

30.94

32.57

15.79

17.98
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